Documentation

Carleson.Classical.CarlesonOnTheRealLine

theorem localOscillation_on_empty_ball {X : Type} [PseudoMetricSpace X] {x : X} {f g : C(X, )} {R : } (R_nonpos : R 0) :
Equations
Instances For
    Equations
    • One or more equations did not get rendered due to their size.
    theorem dist_integer_linear_eq {n m : Θ } {x R : } :
    dist n m = 2 * (R 0) * |n - m|
    theorem coeΘ_R (n : Θ ) (x : ) :
    n x = n * x
    theorem coeΘ_R_C (n : Θ ) (x : ) :
    (n x) = n * x
    theorem oscillation_control {x r : } {f g : Θ } :
    theorem frequency_monotone {x₁ x₂ r R : } {f g : Θ } (h : Metric.ball x₁ r Metric.ball x₂ R) :
    dist f g dist f g
    theorem frequency_ball_doubling {x₁ x₂ r : } {f g : Θ } :
    dist f g 2 * dist f g
    theorem frequency_ball_growth {x₁ x₂ r : } {f g : Θ } :
    2 * dist f g dist f g
    theorem integer_ball_cover {x R R' : } {f : WithFunctionDistance x R} :
    CoveredByBalls (Metric.ball f (2 * R')) 3 R'
    theorem Real.vol_real_eq {x y : } :
    Real.vol x y = 2 * |x - y|
    theorem Hilbert_strong_2_2 (r : ) :
    r > 0MeasureTheory.HasBoundedStrongType (CZOperator K r) 2 2 MeasureTheory.volume MeasureTheory.volume (C_Ts 4)
    theorem rcarleson {F G : Set } (hF : MeasurableSet F) (hG : MeasurableSet G) (f : ) (hmf : Measurable f) (hf : ∀ (x : ), f x F.indicator 1 x) :
    ∫⁻ (x : ) in G, carlesonOperatorReal K f x ENNReal.ofReal (C10_0_1 4 2) * MeasureTheory.volume G ^ 2⁻¹ * MeasureTheory.volume F ^ 2⁻¹