Documentation

Carleson.ToMathlib.BoundedFiniteSupport

structure BoundedFiniteSupport {X : Type u_1} {E : Type u_2} [MeasurableSpace X] [TopologicalSpace E] [ENorm E] [Zero E] (f : XE) (μ : MeasureTheory.Measure X := by volume_tac) :

Definition to avoid repeating ourselves. Blueprint states: bounded measurable function $g$ on $X$ supported on a set of finite measure.

Instances For

    Bounded finitely supported functions are in all Lᵖ spaces.

    Bounded finitely supported functions are integrable.

    theorem BoundedFiniteSupport.indicator {X : Type u_1} {E : Type u_2} [MeasurableSpace X] {f : XE} {μ : MeasureTheory.Measure X} [NormedAddCommGroup E] (bfs : BoundedFiniteSupport f μ) {s : Set X} (hs : MeasurableSet s) :
    theorem BoundedFiniteSupport.add {X : Type u_1} {E : Type u_2} [MeasurableSpace X] {f g : XE} {μ : MeasureTheory.Measure X} [NormedAddCommGroup E] (hf : BoundedFiniteSupport f μ) (hg : BoundedFiniteSupport g μ) :
    theorem BoundedFiniteSupport.sub {X : Type u_1} {E : Type u_2} [MeasurableSpace X] {f g : XE} {μ : MeasureTheory.Measure X} [NormedAddCommGroup E] (hf : BoundedFiniteSupport f μ) (hg : BoundedFiniteSupport g μ) :