theorem
AEMeasurable.piecewise
{α : Type u_1}
{β : Type u_2}
{s : Set α}
{f g : α → β}
{m : MeasurableSpace α}
{mβ : MeasurableSpace β}
{μ : MeasureTheory.Measure α}
{d : DecidablePred fun (x : α) => x ∈ s}
(hs : MeasurableSet s)
(hf : AEMeasurable f μ)
(hg : AEMeasurable g μ)
:
AEMeasurable (s.piecewise f g) μ
theorem
AEMeasurable.ite
{α : Type u_1}
{β : Type u_2}
{p : α → Prop}
{f g : α → β}
{m : MeasurableSpace α}
{mβ : MeasurableSpace β}
{μ : MeasureTheory.Measure α}
{d : DecidablePred p}
(hp : MeasurableSet {a : α | p a})
(hf : AEMeasurable f μ)
(hg : AEMeasurable g μ)
:
AEMeasurable (fun (x : α) => if p x then f x else g x) μ
Partitioning an interval #
Averaging #
theorem
MeasureTheory.AEStronglyMeasurable_continuousMap_coe
{X : Type u_1}
{Y : Type u_2}
[TopologicalSpace X]
[TopologicalSpace Y]
[MeasurableSpace X]
[OpensMeasurableSpace X]
[TopologicalSpace.PseudoMetrizableSpace Y]
[SecondCountableTopologyEither X Y]
(f : C(X, Y))
:
theorem
MeasureTheory.measure_mono_ae'
{α : Type u_1}
{m : MeasurableSpace α}
{μ : Measure α}
{A B : Set α}
(h : μ (B \ A) = 0)
:
theorem
MeasureTheory.AEStronglyMeasurable.ennreal_toReal
{α : Type u_1}
{m : MeasurableSpace α}
{μ : Measure α}
{u : α → ENNReal}
(hu : AEStronglyMeasurable u μ)
:
AEStronglyMeasurable (fun (x : α) => (u x).toReal) μ
theorem
MeasureTheory.eLpNormEssSup_lt_top_of_ae_ennnorm_bound
{α : Type u_1}
{m : MeasurableSpace α}
{μ : Measure α}
{F : Type u_2}
[NormedAddCommGroup F]
{f : α → F}
{C : ENNReal}
(hfC : ∀ᵐ (x : α) ∂μ, ↑‖f x‖₊ ≤ C)
:
theorem
MeasureTheory.restrict_absolutelyContinuous
{α : Type u_1}
{m : MeasurableSpace α}
{μ : Measure α}
{s : Set α}
:
(μ.restrict s).AbsolutelyContinuous μ
theorem
MeasureTheory.eLpNormEssSup_toReal_le
{α : Type u_1}
{m : MeasurableSpace α}
{μ : Measure α}
{f : α → ENNReal}
:
theorem
MeasureTheory.eLpNormEssSup_toReal_eq
{α : Type u_1}
{m : MeasurableSpace α}
{μ : Measure α}
{f : α → ENNReal}
(hf : ∀ᵐ (x : α) ∂μ, f x ≠ ⊤)
:
theorem
MeasureTheory.eLpNorm'_toReal_le
{α : Type u_1}
{m : MeasurableSpace α}
{μ : Measure α}
{f : α → ENNReal}
{p : ℝ}
(hp : 0 ≤ p)
:
theorem
MeasureTheory.eLpNorm_toReal_le
{α : Type u_1}
{m : MeasurableSpace α}
{μ : Measure α}
{p : ENNReal}
{f : α → ENNReal}
:
theorem
MeasureTheory.MemLp.toReal
{α : Type u_1}
{m : MeasurableSpace α}
{μ : Measure α}
{p : ENNReal}
{f : α → ENNReal}
(hf : MemLp f p μ)
:
theorem
MeasureTheory.Integrable.toReal
{α : Type u_1}
{m : MeasurableSpace α}
{μ : Measure α}
{f : α → ENNReal}
(hf : Integrable f μ)
:
Integrable (fun (x : α) => (f x).toReal) μ
An equivalence relation on the set s.
- refl (x : α) : x ∈ s → r x x
An equivalence relation is reflexive:
x ~ x An equivalence relation is symmetric:
x ~ yimpliesy ~ xAn equivalence relation is transitive:
x ~ yandy ~ zimpliesx ~ z
Instances For
theorem
EquivalenceOn.exists_rep
{α : Type u_1}
{r : α → α → Prop}
{s : Set α}
{hr : EquivalenceOn r s}
(x : α)
:
theorem
EquivalenceOn.out_mem
{α : Type u_1}
{r : α → α → Prop}
{s : Set α}
{hr : EquivalenceOn r s}
{x : α}
(hx : x ∈ s)
:
@[simp]
theorem
EquivalenceOn.out_mem_iff
{α : Type u_1}
{r : α → α → Prop}
{s : Set α}
{hr : EquivalenceOn r s}
{x : α}
:
theorem
EquivalenceOn.out_rel
{α : Type u_1}
{r : α → α → Prop}
{s : Set α}
{hr : EquivalenceOn r s}
{x : α}
(hx : x ∈ s)
:
r (hr.out x) x
theorem
EquivalenceOn.rel_out
{α : Type u_1}
{r : α → α → Prop}
{s : Set α}
{hr : EquivalenceOn r s}
{x : α}
(hx : x ∈ s)
:
r x (hr.out x)
theorem
EquivalenceOn.out_mem_reprs
{α : Type u_1}
{r : α → α → Prop}
{s : Set α}
{hr : EquivalenceOn r s}
{x : α}
(hx : x ∈ s)
:
theorem
EquivalenceOn.reprs_subset
{α : Type u_1}
{r : α → α → Prop}
{s : Set α}
{hr : EquivalenceOn r s}
:
theorem
Set.Finite.biSup_eq
{α : Type u_1}
{ι : Type u_2}
[CompleteLinearOrder α]
{s : Set ι}
(hs : s.Finite)
(hs' : s.Nonempty)
(f : ι → α)
:
∃ i ∈ s, ⨆ j ∈ s, f j = f i
theorem
Set.indicator_eq_indicator_one_mul
{ι : Type u_1}
{M : Type u_2}
[MulZeroOneClass M]
(s : Set ι)
(f : ι → M)
(x : ι)
:
theorem
Set.conj_indicator
{α : Type u_1}
{𝕜 : Type u_2}
[RCLike 𝕜]
{f : α → 𝕜}
(s : Set α)
(x : α)
:
theorem
norm_indicator_one_le
{α : Type u_1}
{E : Type u_2}
[SeminormedAddCommGroup E]
[One E]
[NormOneClass E]
{s : Set α}
(x : α)
:
theorem
BddAbove.range_finsetSum
{ι : Type u_1}
{ι' : Type u_2}
{M : Type u_4}
[Preorder M]
[AddCommMonoid M]
[AddLeftMono M]
[AddRightMono M]
{s : Finset ι}
{f : ι → ι' → M}
(hf : ∀ i ∈ s, BddAbove (Set.range (f i)))
:
theorem
isBounded_range_iff_bddAbove_norm'
{ι : Sort u_5}
{E : Type u_6}
[SeminormedAddCommGroup E]
{f : ι → E}
:
theorem
isBounded_range_iff_bddAbove_norm
{ι : Sort u_5}
{E : Type u_6}
[SeminormedAddCommGroup E]
{f : ι → E}
:
theorem
isBounded_image_iff_bddAbove_norm'
{ι : Type u_5}
{E : Type u_6}
[SeminormedAddCommGroup E]
{f : ι → E}
{s : Set ι}
:
theorem
isBounded_image_iff_bddAbove_norm
{ι : Type u_5}
{E : Type u_6}
[SeminormedAddCommGroup E]
{f : ι → E}
{s : Set ι}
:
theorem
MeasureTheory.HasCompactSupport.of_support_subset_closedBall
{X : Type u_2}
{α : Type u_3}
[Zero α]
{f : X → α}
[PseudoMetricSpace X]
[ProperSpace X]
{x : X}
{r : ℝ}
(hf : Function.support f ⊆ Metric.closedBall x r)
:
theorem
MeasureTheory.HasCompactSupport.of_support_subset_isBounded
{X : Type u_2}
{α : Type u_3}
[Zero α]
{f : X → α}
[PseudoMetricSpace X]
[ProperSpace X]
{s : Set X}
(hs : Bornology.IsBounded s)
(hf : Function.support f ⊆ s)
:
theorem
MeasureTheory.Integrable.indicator_const
{X : Type u_2}
[MeasureSpace X]
{c : ℝ}
{s : Set X}
(hs : MeasurableSet s)
(h2s : volume s < ⊤)
:
Integrable (s.indicator fun (x : X) => c) volume
theorem
MeasureTheory.setIntegral_biUnion_le_sum_setIntegral
{X : Type u_4}
{ι : Type u_5}
[MeasurableSpace X]
{f : X → ℝ}
(s : Finset ι)
{S : ι → Set X}
{μ : Measure X}
(f_ae_nonneg : ∀ᵐ (x : X) ∂μ.restrict (⋃ i ∈ s, S i), 0 ≤ f x)
(int_f : IntegrableOn f (⋃ i ∈ s, S i) μ)
:
theorem
MeasureTheory.average_smul_const
{X : Type u_4}
{E : Type u_5}
[MeasurableSpace X]
{μ : Measure X}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{𝕜 : Type u_6}
[RCLike 𝕜]
[NormedSpace 𝕜 E]
[CompleteSpace E]
(f : X → 𝕜)
(c : E)
:
theorem
Finset.prod_finset_product_filter_right
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{s : Finset α}
{t : Finset β}
{p : α → Prop}
{q : α → β → Prop}
[DecidablePred p]
[DecidableRel q]
[DecidablePred fun (r : α × β) => p r.1 ∧ q r.1 r.2]
{f : α → β → γ}
[CommMonoid γ]
:
theorem
Finset.sum_finset_product_filter_right
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{s : Finset α}
{t : Finset β}
{p : α → Prop}
{q : α → β → Prop}
[DecidablePred p]
[DecidableRel q]
[DecidablePred fun (r : α × β) => p r.1 ∧ q r.1 r.2]
{f : α → β → γ}
[AddCommMonoid γ]
:
theorem
Finset.sum_range_mul_conj_sum_range
{α : Type u_1}
{s : Finset α}
{f : α → ℂ}
:
∑ j ∈ s, f j * (starRingEnd ℂ) (f j) + ∑ j ∈ s, ∑ j' ∈ s with j ≠ j', f j * (starRingEnd ℂ) (f j') = (∑ j ∈ s, f j) * (starRingEnd ℂ) (∑ j' ∈ s, f j')
theorem
MeasureTheory.sum_sq_eLpNorm_indicator_le_of_pairwiseDisjoint
{α : Type u_1}
{ι : Type u_2}
{F : Type u_3}
[MeasurableSpace α]
[NormedAddCommGroup F]
{μ : Measure α}
{s : Finset ι}
{f : α → F}
{t : ι → Set α}
(meast : ∀ (i : ι), MeasurableSet (t i))
(hpd : (↑s).PairwiseDisjoint t)
:
theorem
MeasureTheory.measurable_measure_ball
{α : Type u_1}
[PseudoMetricSpace α]
[SecondCountableTopology α]
[MeasurableSpace α]
[OpensMeasurableSpace α]
{μ : Measure α}
[SFinite μ]
:
Measurable fun (x : α × ℝ) =>
match x with
| (a, r) => μ (Metric.ball a r)