Documentation

Carleson.ToMathlib.Misc

theorem Metric.dense_iff_iUnion_ball {X : Type u_1} [PseudoMetricSpace X] (s : Set X) :
Dense s r > 0, cs, Metric.ball c r = Set.univ
theorem PseudoMetricSpace.dist_eq_of_dist_zero {X : Type u_1} [PseudoMetricSpace X] (x : X) {y : X} {y' : X} (hyy' : dist y y' = 0) :
dist x y = dist x y'
theorem IsTop.isMax_iff {α : Type u_1} [PartialOrder α] {i : α} {j : α} (h : IsTop i) :
IsMax j j = i
theorem Int.floor_le_iff (c : ) (z : ) :
c z c < z + 1
theorem Int.le_ceil_iff (c : ) (z : ) :
z c z - 1 < c
theorem Int.Icc_of_eq_sub_1 {a : } {b : } (h : a = b - 1) :
Finset.Icc a b = {a, b}
theorem tsum_one_eq' {α : Type u_1} (s : Set α) :
∑' (x : s), 1 = s.encard
theorem ENNReal.tsum_const_eq' {α : Type u_1} (s : Set α) (c : ENNReal) :
∑' (x : s), c = s.encard * c

ENNReal manipulation lemmas #

theorem ENNReal.sum_geometric_two_pow_toNNReal {k : } (hk : k > 0) :
∑' (n : ), 2 ^ (-k * n) = (1 / (1 - 1 / 2 ^ k)).toNNReal
theorem ENNReal.sum_geometric_two_pow_neg_one :
∑' (n : ), 2 ^ (-n) = 2
theorem ENNReal.sum_geometric_two_pow_neg_two :
∑' (n : ), 2 ^ (-2 * n) = (4 / 3).toNNReal
theorem tsum_geometric_ite_eq_tsum_geometric {k : } {c : } :
(∑' (n : ), if k n then 2 ^ (-c * (n - k)) else 0) = ∑' (n : ), 2 ^ (-c * n)

Partitioning an interval #

theorem MeasureTheory.lintegral_Ioc_partition {a : } {b : } {c : } {f : ENNReal} (hc : 0 c) :
∫⁻ (t : ) in Set.Ioc (a * c) (b * c), f t = lFinset.Ico a b, ∫⁻ (t : ) in Set.Ioc (l * c) ((l + 1) * c), f t

Averaging #

theorem MeasureTheory.laverage_add_left {α : Type u_1} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} {f : αENNReal} {g : αENNReal} (hf : AEMeasurable f μ) :
⨍⁻ (x : α), f x + g xμ = ⨍⁻ (x : α), f xμ + ⨍⁻ (x : α), g xμ
theorem MeasureTheory.laverage_mono {α : Type u_1} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} {f : αENNReal} {g : αENNReal} (h : ∀ (x : α), f x g x) :
⨍⁻ (x : α), f xμ ⨍⁻ (x : α), g xμ
theorem MeasureTheory.laverage_const_mul {α : Type u_1} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} {f : αENNReal} {c : ENNReal} (hc : c ) :
c * ⨍⁻ (x : α), f xμ = ⨍⁻ (x : α), c * f xμ
theorem MeasureTheory.setLaverage_add_left' {α : Type u_1} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s : Set α} {f : αENNReal} {g : αENNReal} (hf : AEMeasurable f μ) :
⨍⁻ (x : α) in s, f x + g xμ = ⨍⁻ (x : α) in s, f xμ + ⨍⁻ (x : α) in s, g xμ
theorem MeasureTheory.setLaverage_mono' {α : Type u_1} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s : Set α} (hs : MeasurableSet s) {f : αENNReal} {g : αENNReal} (h : xs, f x g x) :
⨍⁻ (x : α) in s, f xμ ⨍⁻ (x : α) in s, g xμ
theorem MeasureTheory.laverage_mono_ae {α : Type u_1} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} {f : αENNReal} {g : αENNReal} (h : ∀ᵐ (a : α) ∂μ, f a g a) :
⨍⁻ (a : α), f aμ ⨍⁻ (a : α), g aμ
theorem MeasureTheory.setLAverage_mono_ae {α : Type u_1} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s : Set α} {f : αENNReal} {g : αENNReal} (h : ∀ᵐ (a : α) ∂μ, f a g a) :
⨍⁻ (a : α) in s, f aμ ⨍⁻ (a : α) in s, g aμ
theorem MeasureTheory.setLaverage_const_le {α : Type u_1} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s : Set α} {c : ENNReal} :
⨍⁻ (_x : α) in s, cμ c
theorem MeasureTheory.eLpNormEssSup_lt_top_of_ae_ennnorm_bound {α : Type u_1} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} {F : Type u_2} [NormedAddCommGroup F] {f : αF} {C : ENNReal} (hfC : ∀ᵐ (x : α) ∂μ, f x‖₊ C) :
@[simp]
theorem MeasureTheory.ENNReal.nnorm_toReal {x : ENNReal} :
x.toReal‖₊ = x.toNNReal

EquivalenceOn #

structure EquivalenceOn {α : Type u_1} (r : ααProp) (s : Set α) :

An equivalence relation on the set s.

  • refl : xs, r x x

    An equivalence relation is reflexive: x ~ x

  • symm : ∀ {x y : α}, x sy sr x yr y x

    An equivalence relation is symmetric: x ~ y implies y ~ x

  • trans : ∀ {x y z : α}, x sy sz sr x yr y zr x z

    An equivalence relation is transitive: x ~ y and y ~ z implies x ~ z

Instances For
    theorem EquivalenceOn.refl {α : Type u_1} {r : ααProp} {s : Set α} (self : EquivalenceOn r s) (x : α) :
    x sr x x

    An equivalence relation is reflexive: x ~ x

    theorem EquivalenceOn.symm {α : Type u_1} {r : ααProp} {s : Set α} (self : EquivalenceOn r s) {x : α} {y : α} :
    x sy sr x yr y x

    An equivalence relation is symmetric: x ~ y implies y ~ x

    theorem EquivalenceOn.trans {α : Type u_1} {r : ααProp} {s : Set α} (self : EquivalenceOn r s) {x : α} {y : α} {z : α} :
    x sy sz sr x yr y zr x z

    An equivalence relation is transitive: x ~ y and y ~ z implies x ~ z

    def EquivalenceOn.setoid {α : Type u_1} {r : ααProp} {s : Set α} (hr : EquivalenceOn r s) :
    Setoid s
    Equations
    • hr.setoid = { r := fun (x y : s) => r x y, iseqv := }
    Instances For
      theorem EquivalenceOn.exists_rep {α : Type u_1} {r : ααProp} {s : Set α} {hr : EquivalenceOn r s} (x : α) :
      ∃ (y : α), x sy s r x y
      noncomputable def EquivalenceOn.out {α : Type u_1} {r : ααProp} {s : Set α} (hr : EquivalenceOn r s) (x : α) :
      α

      An arbitrary representative of x w.r.t. the equivalence relation r.

      Equations
      • hr.out x = if hx : x s then x, hx.out else x
      Instances For
        theorem EquivalenceOn.out_mem {α : Type u_1} {r : ααProp} {s : Set α} {hr : EquivalenceOn r s} {x : α} (hx : x s) :
        hr.out x s
        @[simp]
        theorem EquivalenceOn.out_mem_iff {α : Type u_1} {r : ααProp} {s : Set α} {hr : EquivalenceOn r s} {x : α} :
        hr.out x s x s
        theorem EquivalenceOn.out_rel {α : Type u_1} {r : ααProp} {s : Set α} {hr : EquivalenceOn r s} {x : α} (hx : x s) :
        r (hr.out x) x
        theorem EquivalenceOn.rel_out {α : Type u_1} {r : ααProp} {s : Set α} {hr : EquivalenceOn r s} {x : α} (hx : x s) :
        r x (hr.out x)
        theorem EquivalenceOn.out_inj {α : Type u_1} {r : ααProp} {s : Set α} {hr : EquivalenceOn r s} {x : α} {y : α} (hx : x s) (hy : y s) (h : r x y) :
        hr.out x = hr.out y
        theorem EquivalenceOn.out_inj' {α : Type u_1} {r : ααProp} {s : Set α} {hr : EquivalenceOn r s} {x : α} {y : α} (hx : x s) (hy : y s) (h : r (hr.out x) (hr.out y)) :
        hr.out x = hr.out y
        def EquivalenceOn.reprs {α : Type u_1} {r : ααProp} {s : Set α} (hr : EquivalenceOn r s) :
        Set α

        The set of representatives.

        Equations
        • hr.reprs = hr.out '' s
        Instances For
          theorem EquivalenceOn.out_mem_reprs {α : Type u_1} {r : ααProp} {s : Set α} {hr : EquivalenceOn r s} {x : α} (hx : x s) :
          hr.out x hr.reprs
          theorem EquivalenceOn.reprs_subset {α : Type u_1} {r : ααProp} {s : Set α} {hr : EquivalenceOn r s} :
          hr.reprs s
          theorem EquivalenceOn.reprs_inj {α : Type u_1} {r : ααProp} {s : Set α} {hr : EquivalenceOn r s} {x : α} {y : α} (hx : x hr.reprs) (hy : y hr.reprs) (h : r x y) :
          x = y
          theorem Set.Finite.biSup_eq {α : Type u_1} {ι : Type u_2} [CompleteLinearOrder α] {s : Set ι} (hs : s.Finite) (hs' : s.Nonempty) (f : ια) :
          is, js, f j = f i
          theorem Real.self_lt_two_rpow (x : ) :
          x < 2 ^ x