Documentation

Carleson.ToMathlib.Misc

theorem Real.le_pow_natCeil_logb {b x : } (hb : 1 < b) (hx : 0 < x) :
theorem tsum_one_eq' {α : Type u_1} (s : Set α) :
∑' (x : s), 1 = s.encard
theorem ENNReal.tsum_const_eq' {α : Type u_1} (s : Set α) (c : ENNReal) :
∑' (x : s), c = s.encard * c

ENNReal manipulation lemmas #

theorem ENNReal.sum_geometric_two_pow_toNNReal {k : } (hk : k > 0) :
∑' (n : ), 2 ^ (-k * n) = (1 / (1 - 1 / 2 ^ k)).toNNReal
theorem ENNReal.sum_geometric_two_pow_neg_two :
∑' (n : ), 2 ^ (-2 * n) = (4 / 3).toNNReal
theorem tsum_geometric_ite_eq_tsum_geometric {k c : } :
(∑' (n : ), if k n then 2 ^ (-c * (n - k)) else 0) = ∑' (n : ), 2 ^ (-c * n)
theorem ENNReal.toReal_zpow (x : ENNReal) (z : ) :
x.toReal ^ z = (x ^ z).toReal
theorem iSup_rpow {f : ENNReal} {p : } (hp : 0 < p) :
(⨆ (n : ), f n) ^ p = ⨆ (n : ), f n ^ p
theorem AEMeasurable.piecewise {α : Type u_1} {β : Type u_2} {s : Set α} {f g : αβ} {m : MeasurableSpace α} { : MeasurableSpace β} {μ : MeasureTheory.Measure α} {d : DecidablePred fun (x : α) => x s} (hs : MeasurableSet s) (hf : AEMeasurable f μ) (hg : AEMeasurable g μ) :
theorem AEMeasurable.ite {α : Type u_1} {β : Type u_2} {p : αProp} {f g : αβ} {m : MeasurableSpace α} { : MeasurableSpace β} {μ : MeasureTheory.Measure α} {d : DecidablePred p} (hp : MeasurableSet {a : α | p a}) (hf : AEMeasurable f μ) (hg : AEMeasurable g μ) :
AEMeasurable (fun (x : α) => if p x then f x else g x) μ

Partitioning an interval #

theorem MeasureTheory.lintegral_Ioc_partition {a b : } {c : } {f : ENNReal} (hc : 0 c) :
∫⁻ (t : ) in Set.Ioc (a * c) (b * c), f t = lFinset.Ico a b, ∫⁻ (t : ) in Set.Ioc (l * c) (↑(l + 1) * c), f t

Averaging #

theorem MeasureTheory.laverage_add_left {α : Type u_1} {m0 : MeasurableSpace α} {μ : Measure α} {f g : αENNReal} (hf : AEMeasurable f μ) :
⨍⁻ (x : α), f x + g x μ = ⨍⁻ (x : α), f x μ + ⨍⁻ (x : α), g x μ
theorem MeasureTheory.laverage_mono {α : Type u_1} {m0 : MeasurableSpace α} {μ : Measure α} {f g : αENNReal} (h : ∀ (x : α), f x g x) :
⨍⁻ (x : α), f x μ ⨍⁻ (x : α), g x μ
theorem MeasureTheory.laverage_const_mul {α : Type u_1} {m0 : MeasurableSpace α} {μ : Measure α} {f : αENNReal} {c : ENNReal} (hc : c ) :
c * ⨍⁻ (x : α), f x μ = ⨍⁻ (x : α), c * f x μ
theorem MeasureTheory.setLaverage_add_left' {α : Type u_1} {m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} {f g : αENNReal} (hf : AEMeasurable f μ) :
⨍⁻ (x : α) in s, f x + g x μ = ⨍⁻ (x : α) in s, f x μ + ⨍⁻ (x : α) in s, g x μ
theorem MeasureTheory.setLaverage_mono' {α : Type u_1} {m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} (hs : MeasurableSet s) {f g : αENNReal} (h : xs, f x g x) :
⨍⁻ (x : α) in s, f x μ ⨍⁻ (x : α) in s, g x μ
theorem MeasureTheory.measure_mono_ae' {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {A B : Set α} (h : μ (B \ A) = 0) :
μ B μ A
theorem MeasureTheory.AEStronglyMeasurable.ennreal_toReal {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {u : αENNReal} (hu : AEStronglyMeasurable u μ) :
AEStronglyMeasurable (fun (x : α) => (u x).toReal) μ
theorem MeasureTheory.setLaverage_const_le {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {s : Set α} {c : ENNReal} :
⨍⁻ (_x : α) in s, c μ c
theorem MeasureTheory.eLpNormEssSup_lt_top_of_ae_ennnorm_bound {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {F : Type u_2} [NormedAddCommGroup F] {f : αF} {C : ENNReal} (hfC : ∀ᵐ (x : α) μ, f x‖₊ C) :
theorem MeasureTheory.eLpNormEssSup_toReal_eq {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {f : αENNReal} (hf : ∀ᵐ (x : α) μ, f x ) :
theorem MeasureTheory.eLpNorm'_toReal_le {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {f : αENNReal} {p : } (hp : 0 p) :
theorem MeasureTheory.eLpNorm'_toReal_eq {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {f : αENNReal} {p : } (hf : ∀ᵐ (x : α) μ, f x ) :
theorem MeasureTheory.eLpNorm_toReal_le {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {p : ENNReal} {f : αENNReal} :
theorem MeasureTheory.eLpNorm_toReal_eq {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {p : ENNReal} {f : αENNReal} (hf : ∀ᵐ (x : α) μ, f x ) :
theorem MeasureTheory.sq_eLpNorm_two {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {ε : Type u_3} [ENorm ε] {f : αε} :
eLpNorm f 2 μ ^ 2 = ∫⁻ (x : α), f x‖ₑ ^ 2 μ
theorem MeasureTheory.eLpNorm_two_eq_enorm_integral_mul_conj {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {f : α} (lpf : MemLp f 2 μ) :
eLpNorm f 2 μ ^ 2 = (x : α), f x * (starRingEnd ) (f x) μ‖ₑ

One of the very few cases where a norm can be moved out of an integral.

theorem MeasureTheory.MemLp.toReal {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {p : ENNReal} {f : αENNReal} (hf : MemLp f p μ) :
MemLp (fun (x : α) => (f x).toReal) p μ
theorem MeasureTheory.Integrable.toReal {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {f : αENNReal} (hf : Integrable f μ) :
Integrable (fun (x : α) => (f x).toReal) μ

EquivalenceOn #

structure EquivalenceOn {α : Type u_1} (r : ααProp) (s : Set α) :

An equivalence relation on the set s.

  • refl (x : α) : x sr x x

    An equivalence relation is reflexive: x ~ x

  • symm {x y : α} : x sy sr x yr y x

    An equivalence relation is symmetric: x ~ y implies y ~ x

  • trans {x y z : α} : x sy sz sr x yr y zr x z

    An equivalence relation is transitive: x ~ y and y ~ z implies x ~ z

Instances For
    def EquivalenceOn.setoid {α : Type u_1} {r : ααProp} {s : Set α} (hr : EquivalenceOn r s) :
    Setoid s

    The setoid defined from an equivalence relation on a set.

    Equations
    • hr.setoid = { r := fun (x y : s) => r x y, iseqv := }
    Instances For
      theorem EquivalenceOn.exists_rep {α : Type u_1} {r : ααProp} {s : Set α} {hr : EquivalenceOn r s} (x : α) :
      ∃ (y : α), x sy s r x y
      noncomputable def EquivalenceOn.out {α : Type u_1} {r : ααProp} {s : Set α} (hr : EquivalenceOn r s) (x : α) :
      α

      An arbitrary representative of x w.r.t. the equivalence relation r.

      Equations
      Instances For
        theorem EquivalenceOn.out_mem {α : Type u_1} {r : ααProp} {s : Set α} {hr : EquivalenceOn r s} {x : α} (hx : x s) :
        hr.out x s
        @[simp]
        theorem EquivalenceOn.out_mem_iff {α : Type u_1} {r : ααProp} {s : Set α} {hr : EquivalenceOn r s} {x : α} :
        hr.out x s x s
        theorem EquivalenceOn.out_rel {α : Type u_1} {r : ααProp} {s : Set α} {hr : EquivalenceOn r s} {x : α} (hx : x s) :
        r (hr.out x) x
        theorem EquivalenceOn.rel_out {α : Type u_1} {r : ααProp} {s : Set α} {hr : EquivalenceOn r s} {x : α} (hx : x s) :
        r x (hr.out x)
        theorem EquivalenceOn.out_inj {α : Type u_1} {r : ααProp} {s : Set α} {hr : EquivalenceOn r s} {x y : α} (hx : x s) (hy : y s) (h : r x y) :
        hr.out x = hr.out y
        theorem EquivalenceOn.out_inj' {α : Type u_1} {r : ααProp} {s : Set α} {hr : EquivalenceOn r s} {x y : α} (hx : x s) (hy : y s) (h : r (hr.out x) (hr.out y)) :
        hr.out x = hr.out y
        def EquivalenceOn.reprs {α : Type u_1} {r : ααProp} {s : Set α} (hr : EquivalenceOn r s) :
        Set α

        The set of representatives of an equivalence relation on a set.

        Equations
        Instances For
          theorem EquivalenceOn.out_mem_reprs {α : Type u_1} {r : ααProp} {s : Set α} {hr : EquivalenceOn r s} {x : α} (hx : x s) :
          hr.out x hr.reprs
          theorem EquivalenceOn.reprs_subset {α : Type u_1} {r : ααProp} {s : Set α} {hr : EquivalenceOn r s} :
          hr.reprs s
          theorem EquivalenceOn.reprs_inj {α : Type u_1} {r : ααProp} {s : Set α} {hr : EquivalenceOn r s} {x y : α} (hx : x hr.reprs) (hy : y hr.reprs) (h : r x y) :
          x = y
          theorem Set.Finite.biSup_eq {α : Type u_1} {ι : Type u_2} [CompleteLinearOrder α] {s : Set ι} (hs : s.Finite) (hs' : s.Nonempty) (f : ια) :
          is, js, f j = f i
          theorem Real.self_lt_two_rpow (x : ) :
          x < 2 ^ x
          theorem ENNReal.rpow_le_rpow_of_nonpos {x y : ENNReal} {z : } (hz : z 0) (h : x y) :
          y ^ z x ^ z
          theorem ENNReal.rpow_lt_rpow_of_neg {x y : ENNReal} {z : } (hz : z < 0) (h : x < y) :
          y ^ z < x ^ z
          theorem ENNReal.rpow_lt_rpow_iff_of_neg {x y : ENNReal} {z : } (hz : z < 0) :
          x ^ z < y ^ z y < x
          theorem ENNReal.rpow_le_rpow_iff_of_neg {x y : ENNReal} {z : } (hz : z < 0) :
          x ^ z y ^ z y x
          theorem ENNReal.rpow_le_self_of_one_le {x : ENNReal} {y : } (hx : 1 x) (hy : y 1) :
          x ^ y x
          theorem Set.indicator_eq_indicator' {α : Type u_1} {M : Type u_2} [Zero M] {s : Set α} {f g : αM} (h : xs, f x = g x) :
          theorem Set.indicator_eq_indicator_one_mul {ι : Type u_1} {M : Type u_2} [MulZeroOneClass M] (s : Set ι) (f : ιM) (x : ι) :
          s.indicator f x = s.indicator 1 x * f x
          theorem Set.conj_indicator {α : Type u_1} {𝕜 : Type u_2} [RCLike 𝕜] {f : α𝕜} (s : Set α) (x : α) :
          (starRingEnd 𝕜) (s.indicator f x) = s.indicator ((starRingEnd (α𝕜)) f) x
          theorem Set.eq_indicator_one_mul_of_norm_le {X : Type u_1} {F : Set X} {f : X} (hf : ∀ (x : X), f x F.indicator 1 x) :
          f = F.indicator 1 * f
          theorem Set.indicator_one_le_one {X : Type u_1} {G : Set X} (x : X) :
          G.indicator 1 x 1
          theorem norm_indicator_one_le {α : Type u_1} {E : Type u_2} [SeminormedAddCommGroup E] [One E] [NormOneClass E] {s : Set α} (x : α) :
          theorem exp_I_mul_eq_one_iff_of_lt_of_lt (x : ) (hx : -(2 * Real.pi) < x) (h'x : x < 2 * Real.pi) :
          Complex.exp (Complex.I * x) = 1 x = 0
          @[simp]
          theorem BddAbove.range_const {ι : Type u_1} {M : Type u_4} [Preorder M] {c : M} :
          BddAbove (Set.range fun (x : ι) => c)
          @[simp]
          theorem BddAbove.range_one {ι : Type u_1} {M : Type u_4} [Preorder M] [One M] :
          @[simp]
          theorem BddAbove.range_zero {ι : Type u_1} {M : Type u_4} [Preorder M] [Zero M] :
          theorem BddAbove.range_finsetSum {ι : Type u_1} {ι' : Type u_2} {M : Type u_4} [Preorder M] [AddCommMonoid M] [AddLeftMono M] [AddRightMono M] {s : Finset ι} {f : ιι'M} (hf : is, BddAbove (Set.range (f i))) :
          BddAbove (Set.range fun (x : ι') => is, f i x)
          theorem isBounded_range_iff_bddAbove_norm' {ι : Sort u_5} {E : Type u_6} [SeminormedAddCommGroup E] {f : ιE} :
          theorem isBounded_range_iff_bddAbove_norm {ι : Sort u_5} {E : Type u_6} [SeminormedAddCommGroup E] {f : ιE} :
          theorem isBounded_image_iff_bddAbove_norm' {ι : Type u_5} {E : Type u_6} [SeminormedAddCommGroup E] {f : ιE} {s : Set ι} :
          Bornology.IsBounded (f '' s) BddAbove ((fun (x : ι) => f x) '' s)
          theorem isBounded_image_iff_bddAbove_norm {ι : Type u_5} {E : Type u_6} [SeminormedAddCommGroup E] {f : ιE} {s : Set ι} :
          Bornology.IsBounded (f '' s) BddAbove ((fun (x : ι) => f x) '' s)
          theorem MeasureTheory.Integrable.indicator_const {X : Type u_2} [MeasureSpace X] {c : } {s : Set X} (hs : MeasurableSet s) (h2s : volume s < ) :
          Integrable (s.indicator fun (x : X) => c) volume
          theorem MeasureTheory.setIntegral_biUnion_le_sum_setIntegral {X : Type u_4} {ι : Type u_5} [MeasurableSpace X] {f : X} (s : Finset ι) {S : ιSet X} {μ : Measure X} (f_ae_nonneg : ∀ᵐ (x : X) μ.restrict (⋃ is, S i), 0 f x) (int_f : IntegrableOn f (⋃ is, S i) μ) :
          (x : X) in is, S i, f x μ is, (x : X) in S i, f x μ
          theorem MeasureTheory.average_smul_const {X : Type u_4} {E : Type u_5} [MeasurableSpace X] {μ : Measure X} [NormedAddCommGroup E] [NormedSpace E] {𝕜 : Type u_6} [RCLike 𝕜] [NormedSpace 𝕜 E] [CompleteSpace E] (f : X𝕜) (c : E) :
          (x : X), f x c μ = ( (x : X), f x μ) c
          theorem ENNReal.lintegral_Lp_smul {α : Type u_1} [MeasurableSpace α] {μ : MeasureTheory.Measure α} {f : αENNReal} (hf : AEMeasurable f μ) {p : } (hp : p > 0) (c : NNReal) :
          (∫⁻ (x : α), (c f) x ^ p μ) ^ (1 / p) = c (∫⁻ (x : α), f x ^ p μ) ^ (1 / p)
          theorem ENNReal.ofReal_zpow {p : } (hp : 0 < p) (n : ) :
          @[simp]
          theorem prod_attach_insert {α : Type u_1} {β : Type u_2} {s : Finset α} {a : α} [DecidableEq α] [CommMonoid β] {f : { i : α // i insert a s }β} (ha : as) :
          x(insert a s).attach, f x = f a, * xs.attach, f x,
          @[simp]
          theorem sum_attach_insert {α : Type u_1} {β : Type u_2} {s : Finset α} {a : α} [DecidableEq α] [AddCommMonoid β] {f : { i : α // i insert a s }β} (ha : as) :
          x(insert a s).attach, f x = f a, + xs.attach, f x,
          theorem Finset.prod_finset_product_filter_right {α : Type u_1} {β : Type u_2} {γ : Type u_3} {s : Finset α} {t : Finset β} {p : αProp} {q : αβProp} [DecidablePred p] [DecidableRel q] [DecidablePred fun (r : α × β) => p r.1 q r.1 r.2] {f : αβγ} [CommMonoid γ] :
          xs with p x, yt with q x y, f x y = rs ×ˢ t with p r.1 q r.1 r.2, f r.1 r.2
          theorem Finset.sum_finset_product_filter_right {α : Type u_1} {β : Type u_2} {γ : Type u_3} {s : Finset α} {t : Finset β} {p : αProp} {q : αβProp} [DecidablePred p] [DecidableRel q] [DecidablePred fun (r : α × β) => p r.1 q r.1 r.2] {f : αβγ} [AddCommMonoid γ] :
          xs with p x, yt with q x y, f x y = rs ×ˢ t with p r.1 q r.1 r.2, f r.1 r.2
          theorem Finset.sum_range_mul_conj_sum_range {α : Type u_1} {s : Finset α} {f : α} :
          js, f j * (starRingEnd ) (f j) + js, j's with j j', f j * (starRingEnd ) (f j') = (∑ js, f j) * (starRingEnd ) (∑ j's, f j')
          theorem Finset.pow_sum_comm {ι : Type u_1} {R : Type u_2} [Semiring R] {s : Finset ι} {f : ιR} (hf : is, js, i jf i * f j = 0) {n : } (hn : 1 n) :
          (∑ is, f i) ^ n = is, f i ^ n
          theorem MeasureTheory.sum_sq_eLpNorm_indicator_le_of_pairwiseDisjoint {α : Type u_1} {ι : Type u_2} {F : Type u_3} [MeasurableSpace α] [NormedAddCommGroup F] {μ : Measure α} {s : Finset ι} {f : αF} {t : ιSet α} (meast : ∀ (i : ι), MeasurableSet (t i)) (hpd : (↑s).PairwiseDisjoint t) :
          is, eLpNorm ((t i).indicator f) 2 μ ^ 2 eLpNorm f 2 μ ^ 2
          theorem MeasureTheory.measurable_measure_ball {α : Type u_1} [PseudoMetricSpace α] [SecondCountableTopology α] [MeasurableSpace α] [OpensMeasurableSpace α] {μ : Measure α} [SFinite μ] :
          Measurable fun (x : α × ) => match x with | (a, r) => μ (Metric.ball a r)