Partitioning an interval #
Averaging #
theorem
MeasureTheory.laverage_add_left
{α : Type u_1}
{m0 : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f g : α → ENNReal}
(hf : AEMeasurable f μ)
:
theorem
MeasureTheory.laverage_mono
{α : Type u_1}
{m0 : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f g : α → ENNReal}
(h : ∀ (x : α), f x ≤ g x)
:
⨍⁻ (x : α), f x ∂μ ≤ ⨍⁻ (x : α), g x ∂μ
theorem
MeasureTheory.laverage_const_mul
{α : Type u_1}
{m0 : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f : α → ENNReal}
{c : ENNReal}
(hc : c ≠ ⊤)
:
theorem
MeasureTheory.setLaverage_add_left'
{α : Type u_1}
{m0 : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{s : Set α}
{f g : α → ENNReal}
(hf : AEMeasurable f μ)
:
theorem
MeasureTheory.setLaverage_mono'
{α : Type u_1}
{m0 : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{s : Set α}
(hs : MeasurableSet s)
{f g : α → ENNReal}
(h : ∀ x ∈ s, f x ≤ g x)
:
⨍⁻ (x : α) in s, f x ∂μ ≤ ⨍⁻ (x : α) in s, g x ∂μ
theorem
MeasureTheory.AEStronglyMeasurable.ennreal_toReal
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{u : α → ENNReal}
(hu : MeasureTheory.AEStronglyMeasurable u μ)
:
MeasureTheory.AEStronglyMeasurable (fun (x : α) => (u x).toReal) μ
theorem
MeasureTheory.laverage_mono_ae
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f g : α → ENNReal}
(h : ∀ᵐ (a : α) ∂μ, f a ≤ g a)
:
⨍⁻ (a : α), f a ∂μ ≤ ⨍⁻ (a : α), g a ∂μ
theorem
MeasureTheory.setLAverage_mono_ae
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{s : Set α}
{f g : α → ENNReal}
(h : ∀ᵐ (a : α) ∂μ, f a ≤ g a)
:
⨍⁻ (a : α) in s, f a ∂μ ≤ ⨍⁻ (a : α) in s, g a ∂μ
theorem
MeasureTheory.setLaverage_const_le
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{s : Set α}
{c : ENNReal}
:
⨍⁻ (_x : α) in s, c ∂μ ≤ c
theorem
MeasureTheory.eLpNormEssSup_lt_top_of_ae_ennnorm_bound
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{F : Type u_2}
[NormedAddCommGroup F]
{f : α → F}
{C : ENNReal}
(hfC : ∀ᵐ (x : α) ∂μ, ↑‖f x‖₊ ≤ C)
:
MeasureTheory.eLpNormEssSup f μ ≤ C
theorem
MeasureTheory.restrict_absolutelyContinuous
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{s : Set α}
:
(μ.restrict s).AbsolutelyContinuous μ
theorem
HasCompactSupport.memℒp_of_isBounded
{E : Type u_1}
{X : Type u_2}
[NormedAddCommGroup E]
[TopologicalSpace X]
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
[MeasureTheory.IsFiniteMeasureOnCompacts μ]
{f : X → E}
(hf : HasCompactSupport f)
(h2f : Bornology.IsBounded (Set.range f))
(h3f : MeasureTheory.AEStronglyMeasurable f μ)
{p : ENNReal}
:
MeasureTheory.Memℒp f p μ
An equivalence relation on the set s
.
- refl : ∀ x ∈ s, r x x
An equivalence relation is reflexive:
x ~ x
An equivalence relation is symmetric:
x ~ y
impliesy ~ x
An equivalence relation is transitive:
x ~ y
andy ~ z
impliesx ~ z
Instances For
def
EquivalenceOn.setoid
{α : Type u_1}
{r : α → α → Prop}
{s : Set α}
(hr : EquivalenceOn r s)
:
Setoid ↑s
The setoid defined from an equivalence relation on a set.
Equations
- hr.setoid = { r := fun (x y : ↑s) => r ↑x ↑y, iseqv := ⋯ }
Instances For
theorem
EquivalenceOn.exists_rep
{α : Type u_1}
{r : α → α → Prop}
{s : Set α}
{hr : EquivalenceOn r s}
(x : α)
:
noncomputable def
EquivalenceOn.out
{α : Type u_1}
{r : α → α → Prop}
{s : Set α}
(hr : EquivalenceOn r s)
(x : α)
:
α
An arbitrary representative of x
w.r.t. the equivalence relation r
.
Instances For
theorem
EquivalenceOn.out_mem
{α : Type u_1}
{r : α → α → Prop}
{s : Set α}
{hr : EquivalenceOn r s}
{x : α}
(hx : x ∈ s)
:
hr.out x ∈ s
@[simp]
theorem
EquivalenceOn.out_mem_iff
{α : Type u_1}
{r : α → α → Prop}
{s : Set α}
{hr : EquivalenceOn r s}
{x : α}
:
theorem
EquivalenceOn.out_rel
{α : Type u_1}
{r : α → α → Prop}
{s : Set α}
{hr : EquivalenceOn r s}
{x : α}
(hx : x ∈ s)
:
r (hr.out x) x
theorem
EquivalenceOn.rel_out
{α : Type u_1}
{r : α → α → Prop}
{s : Set α}
{hr : EquivalenceOn r s}
{x : α}
(hx : x ∈ s)
:
r x (hr.out x)
theorem
EquivalenceOn.out_inj
{α : Type u_1}
{r : α → α → Prop}
{s : Set α}
{hr : EquivalenceOn r s}
{x y : α}
(hx : x ∈ s)
(hy : y ∈ s)
(h : r x y)
:
hr.out x = hr.out y
theorem
EquivalenceOn.out_inj'
{α : Type u_1}
{r : α → α → Prop}
{s : Set α}
{hr : EquivalenceOn r s}
{x y : α}
(hx : x ∈ s)
(hy : y ∈ s)
(h : r (hr.out x) (hr.out y))
:
hr.out x = hr.out y
def
EquivalenceOn.reprs
{α : Type u_1}
{r : α → α → Prop}
{s : Set α}
(hr : EquivalenceOn r s)
:
Set α
The set of representatives of an equivalence relation on a set.
Instances For
theorem
EquivalenceOn.out_mem_reprs
{α : Type u_1}
{r : α → α → Prop}
{s : Set α}
{hr : EquivalenceOn r s}
{x : α}
(hx : x ∈ s)
:
hr.out x ∈ hr.reprs
theorem
EquivalenceOn.reprs_subset
{α : Type u_1}
{r : α → α → Prop}
{s : Set α}
{hr : EquivalenceOn r s}
:
hr.reprs ⊆ s
theorem
EquivalenceOn.reprs_inj
{α : Type u_1}
{r : α → α → Prop}
{s : Set α}
{hr : EquivalenceOn r s}
{x y : α}
(hx : x ∈ hr.reprs)
(hy : y ∈ hr.reprs)
(h : r x y)
:
x = y
theorem
Set.Finite.biSup_eq
{α : Type u_1}
{ι : Type u_2}
[CompleteLinearOrder α]
{s : Set ι}
(hs : s.Finite)
(hs' : s.Nonempty)
(f : ι → α)
:
∃ i ∈ s, ⨆ j ∈ s, f j = f i