Documentation

Carleson.Discrete.ForestUnion

Section 5.3 #

Note: the lemmas 5.3.1-5.3.3 are in TileStructure.

theorem ordConnected_tilesAt {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {k : } :
(TilesAt k).OrdConnected

Lemma 5.3.4

theorem ordConnected_C {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {k n : } :
( k n).OrdConnected

Lemma 5.3.5

theorem ordConnected_C1 {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {k n j : } :
(ℭ₁ k n j).OrdConnected

Lemma 5.3.6

theorem ordConnected_C2 {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {k n j : } :
(ℭ₂ k n j).OrdConnected

Lemma 5.3.7

theorem ordConnected_C3 {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {k n j : } :
(ℭ₃ k n j).OrdConnected

Lemma 5.3.8

theorem ordConnected_C4 {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {k n j : } :
(ℭ₄ k n j).OrdConnected

Lemma 5.3.9

theorem ordConnected_C5 {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {k n j : } :
(ℭ₅ k n j).OrdConnected

Lemma 5.3.10

theorem dens1_le_dens' {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {k : } {P : Set (𝔓 X)} (hP : P TilesAt k) :

Lemma 5.3.11

theorem dens1_le {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {k n : } {A : Set (𝔓 X)} (hA : A k n) :
dens₁ A 2 ^ (4 * a - n + 1)

Lemma 5.3.12

Section 5.4 and Lemma 5.1.2 #

def ℭ₆ {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (k n j : ) :
Set (𝔓 X)

The subset ℭ₆(k, n, j) of ℭ₅(k, n, j), given above (5.4.1).

Equations
Instances For
    theorem ℭ₆_subset_ℭ₅ {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {k n j : } :
    ℭ₆ k n j ℭ₅ k n j
    theorem ℭ₆_subset_ℭ {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {k n j : } :
    ℭ₆ k n j k n
    def 𝔗₁ {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (k n j : ) (u : 𝔓 X) :
    Set (𝔓 X)

    The subset 𝔗₁(u) of ℭ₁(k, n, j), given in (5.4.1). In lemmas, we will assume u ∈ 𝔘₁ k n l

    Equations
    Instances For
      theorem 𝓘_lt_of_mem_𝔗₁ {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {k n j : } {p p' : 𝔓 X} (h : p 𝔗₁ k n j p') :
      𝓘 p < 𝓘 p'
      def 𝔘₂ {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (k n j : ) :
      Set (𝔓 X)

      The subset 𝔘₂(k, n, j) of 𝔘₁(k, n, j), given in (5.4.2).

      Equations
      Instances For
        theorem 𝔘₂_subset_𝔘₁ {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {k n j : } :
        𝔘₂ k n j 𝔘₁ k n j
        def URel {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (k n j : ) (u u' : 𝔓 X) :

        The relation defined below (5.4.2). It is an equivalence relation on 𝔘₂ k n j.

        Equations
        Instances For
          theorem URel.rfl {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {k n j : } {u : 𝔓 X} :
          URel k n j u u
          theorem URel.not_disjoint {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {k n j : } {u u' : 𝔓 X} (hu : u 𝔘₂ k n j) (hu' : u' 𝔘₂ k n j) (huu' : URel k n j u u') :

          Lemma 5.4.1, part 2.

          theorem URel.eq {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {k n j : } {u u' : 𝔓 X} (hu : u 𝔘₂ k n j) (hu' : u' 𝔘₂ k n j) (huu' : URel k n j u u') :
          𝓘 u = 𝓘 u'

          Lemma 5.4.1, part 1.

          theorem urel_of_not_disjoint {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {k n j : } {x y : 𝔓 X} (my : y 𝔘₂ k n j) (xye : 𝓘 x = 𝓘 y) (nd : ¬Disjoint (Metric.ball (𝒬 x) 100) (Metric.ball (𝒬 y) 100)) :
          URel k n j y x

          Helper for 5.4.2 that is also used in 5.4.9.

          theorem equivalenceOn_urel {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {k n j : } :
          EquivalenceOn (URel k n j) (𝔘₂ k n j)

          Lemma 5.4.2.

          def 𝔘₃ {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (k n j : ) :
          Set (𝔓 X)

          𝔘₃(k, n, j) ⊆ 𝔘₂ k n j is an arbitary set of representatives of URel on 𝔘₂ k n j, given above (5.4.5).

          Equations
          Instances For
            theorem 𝔘₃_subset_𝔘₂ {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {k n j : } :
            𝔘₃ k n j 𝔘₂ k n j
            def 𝔗₂ {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (k n j : ) (u : 𝔓 X) :
            Set (𝔓 X)

            The subset 𝔗₂(u) of ℭ₆(k, n, j), given in (5.4.5). In lemmas, we will assume u ∈ 𝔘₃ k n l

            Equations
            Instances For
              theorem 𝔗₂_subset_ℭ₆ {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {k n j : } {u : 𝔓 X} :
              𝔗₂ k n j u ℭ₆ k n j
              theorem C6_forest {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {k n j : } :
              ℭ₆ k n j = u𝔘₃ k n j, 𝔗₂ k n j u

              Lemma 5.4.3

              theorem forest_geometry {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {k n j : } {p u : 𝔓 X} (hu : u 𝔘₃ k n j) (hp : p 𝔗₂ k n j u) :
              smul 4 p smul 1 u

              Lemma 5.4.4, verifying (2.0.32)

              theorem forest_convex {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {k n j : } {u : 𝔓 X} :
              (𝔗₂ k n j u).OrdConnected

              Lemma 5.4.5, verifying (2.0.33)

              theorem forest_separation {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {k n j : } {p u u' : 𝔓 X} (hu : u 𝔘₃ k n j) (hu' : u' 𝔘₃ k n j) (huu' : u u') (hp : p 𝔗₂ k n j u') (h : 𝓘 p 𝓘 u) :
              2 ^ (defaultZ a * (n + 1)) < dist (𝒬 p) (𝒬 u)

              Lemma 5.4.6, verifying (2.0.36) Note: swapped u and u' to match (2.0.36)

              theorem forest_inner {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {k n j : } {p u : 𝔓 X} (hu : u 𝔘₃ k n j) (hp : p 𝔗₂ k n j u) :
              Metric.ball (𝔠 p) (8 * (defaultD a) ^ 𝔰 p) (𝓘 u)

              Lemma 5.4.7, verifying (2.0.37)

              def C5_4_8 (n : ) :
              Equations
              Instances For
                theorem exists_smul_le_of_𝔘₃ {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {k n j : } (u : (𝔘₃ k n j)) :
                ∃ (m : (𝔐 k n)), smul 100 u smul 1 m
                def mf {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (k n j : ) (u : (𝔘₃ k n j)) :
                (𝔐 k n)
                Equations
                • mf k n j u = .choose
                Instances For
                  theorem mf_injOn {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {k n j : } {x : X} :
                  Set.InjOn (mf k n j) {u : (𝔘₃ k n j) | x 𝓘 u}
                  theorem stackSize_𝔘₃_le_𝔐 {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {k n j : } (x : X) :
                  stackSize (𝔘₃ k n j) x stackSize (𝔐 k n) x
                  theorem forest_stacking {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {k n j : } (x : X) (hkn : k n) :

                  Lemma 5.4.8, used to verify that 𝔘₄ satisfies 2.0.34.

                  def aux𝔘₄ {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (s : Set (𝔓 X)) :
                  Set (𝔓 X)

                  Pick a maximal subset of s satisfying ∀ x, stackSize s x ≤ 2 ^ n

                  Equations
                  Instances For
                    @[irreducible]
                    def 𝔘₄ {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (k n j l : ) :
                    Set (𝔓 X)

                    The sets (𝔘₄(k, n, j, l))_l form a partition of 𝔘₃ k n j.

                    Equations
                    Instances For
                      theorem iUnion_𝔘₄ {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {k n j : } :
                      ⋃ (l : ), 𝔘₄ k n j l = 𝔘₃ k n j
                      theorem 𝔘₄_subset_𝔘₃ {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {k n j l : } :
                      𝔘₄ k n j l 𝔘₃ k n j
                      theorem le_of_nonempty_𝔘₄ {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {k n j l : } (h : (𝔘₄ k n j l).Nonempty) :
                      l < 4 * n + 13
                      theorem pairwiseDisjoint_𝔘₄ {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {k n j : } :
                      Set.univ.PairwiseDisjoint (𝔘₄ k n j)
                      theorem stackSize_𝔘₄_le {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {k n j l : } (x : X) :
                      stackSize (𝔘₄ k n j l) x 2 ^ n
                      def forest {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (k n j l : ) :
                      Equations
                      • forest k n j l = { 𝔘 := 𝔘₄ k n j l, 𝔗 := 𝔗₂ k n j, nonempty' := , ordConnected' := , 𝓘_ne_𝓘' := , smul_four_le' := , stackSize_le' := , dens₁_𝔗_le' := , lt_dist' := , ball_subset' := }
                      Instances For
                        def C5_1_2 (a : ) (q : NNReal) :

                        The constant used in Lemma 5.1.2, with value 2 ^ (235 * a ^ 3) / (q - 1) ^ 4

                        Equations
                        Instances For
                          theorem C5_1_2_pos {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] :
                          C5_1_2 (↑a) (nnq X) > 0
                          theorem forest_union {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {f : X} (hf : ∀ (x : X), f x F.indicator 1 x) :
                          ∫⁻ (x : X) in G \ G', carlesonSum 𝔓₁ f x‖₊ (C5_1_2 (↑a) (nnq X)) * MeasureTheory.volume G ^ (1 - q⁻¹) * MeasureTheory.volume F ^ q⁻¹