Documentation

Carleson.Discrete.Defs

def aux𝓒 {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] (k : β„•) :
Set (Grid X)
Equations
def 𝓒 {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] (k : β„•) :
Set (Grid X)

The partition 𝓒(G, k) of Grid X by volume, given in (5.1.1) and (5.1.2). Note: the G is fixed with properties in ProofData.

Equations
def TilesAt {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] (k : β„•) :

The definition 𝔓(k) given in (5.1.3).

Equations
theorem disjoint_TilesAt_of_ne {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {m n : β„•} (h : m β‰  n) :
theorem pairwiseDisjoint_TilesAt {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] :
def aux𝔐 {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] (k n : β„•) :
Equations
def 𝔐 {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] (k n : β„•) :

The definition 𝔐(k, n) given in (5.1.4) and (5.1.5).

Equations
def dens' {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] (k : β„•) (P' : Set (𝔓 X)) :

The definition dens'_k(𝔓') given in (5.1.6).

Equations
  • One or more equations did not get rendered due to their size.
theorem dens'_iSup {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {k : β„•} {P : Set (𝔓 X)} :
dens' k P = ⨆ p ∈ P, dens' k {p}
def auxβ„­ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] (k n : β„•) :
Equations
def β„­ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] (k n : β„•) :

The partition β„­(k, n) of 𝔓(k) by density, given in (5.1.7).

Equations
theorem β„­_subset_TilesAt {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {k n : β„•} :
theorem disjoint_β„­_of_ne {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {k m n : β„•} (h : m β‰  n) :
Disjoint (β„­ k m) (β„­ k n)
theorem pairwiseDisjoint_β„­ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] :
theorem exists_bound_β„­ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] :
βˆƒ (n : β„• Γ— β„•), βˆ€ x ∈ {kn : β„• Γ— β„• | (β„­ kn.1 kn.2).Nonempty}, x.2 ≀ n.2
def maxβ„­ (X : Type u_1) {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] :
Equations
theorem le_maxβ„­_of_nonempty {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {k n : β„•} (h : (β„­ k n).Nonempty) :
theorem eq_empty_of_maxβ„­_lt {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {k n : β„•} (hn : maxβ„­ X < n) :
theorem dens1_le_dens' {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {k : β„•} {P : Set (𝔓 X)} (hP : P βŠ† TilesAt k) :

Lemma 5.3.11

theorem dens1_le {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {k n : β„•} {A : Set (𝔓 X)} (hA : A βŠ† β„­ k n) :
dens₁ A ≀ 2 ^ (4 * ↑a - ↑n + 1)

Lemma 5.3.12

def 𝔅 {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] (k n : β„•) (p : 𝔓 X) :

The subset 𝔅(p) of 𝔐(k, n), given in (5.1.8).

Equations
def preℭ₁ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] (k n j : β„•) :
Equations
def ℭ₁ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] (k n j : β„•) :

The subset ℭ₁(k, n, j) of β„­(k, n), given in (5.1.9). Together with 𝔏₀(k, n) this forms a partition.

Equations
theorem ℭ₁_subset_β„­ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {k n j : β„•} :
theorem disjoint_ℭ₁_of_ne {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {k n j l : β„•} (h : j β‰  l) :
theorem pairwiseDisjoint_ℭ₁ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {k n : β„•} :
theorem pairwiseDisjoint_ℭ₁' {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] :
Set.univ.PairwiseDisjoint fun (knj : β„• Γ— β„• Γ— β„•) => ℭ₁ knj.1 knj.2.1 knj.2.2
theorem card_𝔅_of_mem_ℭ₁ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {k n j : β„•} {p : 𝔓 X} (hp : p ∈ ℭ₁ k n j) :
(𝔅 k n p).toFinset.card ∈ Set.Ico (2 ^ j) (2 ^ (j + 1))
def 𝔏₀ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] (k n : β„•) :

The subset 𝔏₀(k, n) of β„­(k, n), given in (5.1.10). Not to be confused with 𝔏₀(k, n, j) which is called 𝔏₀' in Lean.

Equations
def 𝔏₁ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] (k n j l : β„•) :

𝔏₁(k, n, j, l) consists of the minimal elements in ℭ₁(k, n, j) not in 𝔏₁(k, n, j, l') for some l' < l. Defined near (5.1.11).

Equations
def β„­β‚‚ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] (k n j : β„•) :

The subset β„­β‚‚(k, n, j) of ℭ₁(k, n, j), given in (5.1.13).

Equations
theorem β„­β‚‚_subset_ℭ₁ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {k n j : β„•} :
def π”˜β‚ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] (k n j : β„•) :

The subset π”˜β‚(k, n, j) of ℭ₁(k, n, j), given in (5.1.14).

Equations
  • One or more equations did not get rendered due to their size.
theorem π”˜β‚_subset_ℭ₁ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {k n j : β„•} :
def 𝔏₂ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] (k n j : β„•) :

The subset 𝔏₂(k, n, j) of β„­β‚‚(k, n, j), given in (5.1.15).

Equations
theorem 𝔏₂_subset_β„­β‚‚ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {k n j : β„•} :
def ℭ₃ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] (k n j : β„•) :

The subset ℭ₃(k, n, j) of β„­β‚‚(k, n, j), given in (5.1.16).

Equations
theorem ℭ₃_def {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {k n j : β„•} {p : 𝔓 X} :
theorem ℭ₃_subset_β„­β‚‚ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {k n j : β„•} :
def 𝔏₃ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] (k n j l : β„•) :

𝔏₃(k, n, j, l) consists of the maximal elements in ℭ₃(k, n, j) not in 𝔏₃(k, n, j, l') for some l' < l. Defined near (5.1.17).

Equations
def β„­β‚„ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] (k n j : β„•) :

The subset β„­β‚„(k, n, j) of ℭ₃(k, n, j), given in (5.1.19).

Equations
theorem β„­β‚„_subset_ℭ₃ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {k n j : β„•} :
def 𝓛 {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] (n : β„•) (u : 𝔓 X) :
Set (Grid X)

The subset 𝓛(u) of Grid X, given near (5.1.20). Note: It seems to also depend on n.

Equations
def 𝔏₄ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] (k n j : β„•) :

The subset 𝔏₄(k, n, j) of β„­β‚„(k, n, j), given near (5.1.22). Todo: we may need to change the definition to say that p is at most the least upper bound of 𝓛 n u in Grid X.

Equations
theorem 𝔏₄_subset_β„­β‚„ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {k n j : β„•} :
def β„­β‚… {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] (k n j : β„•) :

The subset β„­β‚…(k, n, j) of β„­β‚„(k, n, j), given in (5.1.23).

Equations
theorem β„­β‚…_def {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {k n j : β„•} {p : 𝔓 X} :
p ∈ β„­β‚… k n j ↔ p ∈ β„­β‚„ k n j ∧ βˆ€ u ∈ π”˜β‚ k n j, ¬↑(π“˜ p) βŠ† ⋃ i ∈ 𝓛 n u, ↑i
theorem β„­β‚…_subset_β„­β‚„ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {k n j : β„•} :
theorem β„­β‚…_subset_ℭ₁ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {k n j : β„•} :
theorem pairwiseDisjoint_β„­β‚… {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] :
Set.univ.PairwiseDisjoint fun (knj : β„• Γ— β„• Γ— β„•) => β„­β‚… knj.1 knj.2.1 knj.2.2
theorem 𝔏₀_subset_β„­ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {k n : β„•} :
theorem 𝔏₀_disjoint_ℭ₁ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {k n j : β„•} :
theorem 𝔏₁_subset_ℭ₁ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {k n j l : β„•} :
theorem 𝔏₁_subset_β„­ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {k n j l : β„•} :
theorem 𝔏₂_subset_ℭ₁ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {k n j : β„•} :
theorem 𝔏₂_subset_β„­ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {k n j : β„•} :
theorem 𝔏₂_disjoint_ℭ₃ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {k n j : β„•} :
theorem 𝔏₃_subset_ℭ₁ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {k n j l : β„•} :
theorem 𝔏₃_subset_β„­ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {k n j l : β„•} :
theorem 𝔏₄_subset_ℭ₁ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {k n j : β„•} :
theorem 𝔏₄_subset_β„­ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {k n j : β„•} :
theorem β„­β‚…_subset_β„­ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {k n j : β„•} :
def highDensityTiles {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] :

The set PF,G, defined in (5.1.24).

Equations
theorem highDensityTiles_empty {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] (hF : MeasureTheory.volume F = 0) :
theorem highDensityTiles_empty' {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] (hG : MeasureTheory.volume G = 0) :
def G₁ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] :
Set X

The exceptional set G₁, defined in (5.1.25).

Equations
theorem G₁_empty {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] (hF : MeasureTheory.volume F = 0) :
theorem G₁_empty' {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] (hG : MeasureTheory.volume G = 0) :
theorem measurable_G₁ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] :
def setA {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] (l k n : β„•) :
Set X

The set A(Ξ», k, n), defined in (5.1.26).

Equations
theorem setA_subset_iUnion_𝓒 {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {l k n : β„•} :
setA l k n βŠ† ⋃ i ∈ 𝓒 k, ↑i
theorem setA_subset_setA {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {l k n : β„•} :
setA (l + 1) k n βŠ† setA l k n
theorem measurable_setA {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] {l k n : β„•} :
def MsetA {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] (l k n : β„•) :

Finset of cubes in setA. Appears in the proof of Lemma 5.2.5.

Equations
def Gβ‚‚ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] :
Set X

The set Gβ‚‚, defined in (5.1.27).

Equations
theorem measurable_Gβ‚‚ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] :
def G₃ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] :
Set X

The set G₃, defined in (5.1.28).

Equations
theorem measurable_G₃ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] :
def G' {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] :
Set X

The set G', defined below (5.1.28).

Equations
theorem measurable_G' {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] :
def 𝔓₁ {X : Type u_1} {a : β„•} {q : ℝ} {K : X β†’ X β†’ β„‚} {σ₁ Οƒβ‚‚ : X β†’ β„€} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ Οƒβ‚‚ F G] [TileStructure Q (defaultD a) (defaultΞΊ a) (defaultS X) (cancelPt X)] :

The set 𝔓₁, defined in (5.1.30).

Equations