Documentation
Carleson
.
Discrete
.
SumEstimates
Search
return to top
source
Imports
Init
Mathlib.Analysis.SumIntegralComparisons
Mathlib.Analysis.SpecialFunctions.Integrals
Mathlib.Data.Complex.ExponentialBounds
Mathlib.Analysis.SpecialFunctions.Gamma.Basic
Imported by
intervalIntegral_pow_mul_exp_neg_le
sum_Ico_pow_mul_exp_neg_le
sum_Iic_pow_mul_exp_neg_le
sum_Iic_pow_mul_two_pow_neg_le
source
theorem
intervalIntegral_pow_mul_exp_neg_le
{k :
ℕ
}
{M c :
ℝ
}
(hM :
0
≤
M
)
(hc :
0
<
c
)
:
∫ (
x
:
ℝ
) in
0
..
M
,
x
^
k
*
Real.exp
(
-
(
c
*
x
)
)
≤
↑
k
.factorial
/
c
^
(
k
+
1
)
source
theorem
sum_Ico_pow_mul_exp_neg_le
{k M :
ℕ
}
{c :
ℝ
}
(hc :
0
<
c
)
:
∑
i
∈
Finset.Ico
0
M
,
↑
i
^
k
*
Real.exp
(
-
(
c
*
↑
i
)
)
≤
Real.exp
c
*
↑
k
.factorial
/
c
^
(
k
+
1
)
source
theorem
sum_Iic_pow_mul_exp_neg_le
{k M :
ℕ
}
{c :
ℝ
}
(hc :
0
<
c
)
:
∑
i
∈
Finset.Iic
M
,
↑
i
^
k
*
Real.exp
(
-
(
c
*
↑
i
)
)
≤
Real.exp
c
*
↑
k
.factorial
/
c
^
(
k
+
1
)
source
theorem
sum_Iic_pow_mul_two_pow_neg_le
{k M :
ℕ
}
{c :
ℝ
}
(hc :
0
<
c
)
:
∑
i
∈
Finset.Iic
M
,
↑
i
^
k
*
2
^
(
-
(
c
*
↑
i
)
)
≤
2
^
c
*
↑
k
.factorial
/
(
Real.log
2
*
c
)
^
(
k
+
1
)