Carleson operators on doubling metric measure spaces

7 Proof of the Forest Operator Proposition

7.1 The pointwise tree estimate

Fix a forest \(({\mathfrak U}, {\mathfrak T})\). The main result of this subsection is Lemma 7.1.3, we begin this section with some definitions necessary to state the lemma.

For \({\mathfrak u}\in {\mathfrak U}\) and \(x\in X\), we define

\[ \sigma ({\mathfrak u}, x):=\{ {\mathrm{s}}({\mathfrak p}):{\mathfrak p}\in {\mathfrak T}({\mathfrak u}), x\in E({\mathfrak p})\} \, . \]

This is a subset of \(\mathbb {Z} \cap [-S, S]\), so has a minimum and a maximum. We set

\[ \overline{\sigma } ({\mathfrak u}, x) := \max \sigma ({\mathfrak T}({\mathfrak u}), x) \]
\[ \underline{\sigma } ({\mathfrak u}, x) := \min \sigma ({\mathfrak T}({\mathfrak u}), x)\, . \]
Lemma 7.1.1 convex scales
#

For each \({\mathfrak u}\in {\mathfrak U}\), we have

\[ \sigma ({\mathfrak u}, x) = \mathbb {Z} \cap [\underline{\sigma } ({\mathfrak u}, x), \overline{\sigma } ({\mathfrak u}, x)]\, . \]
Proof

Let \(s \in \mathbb {Z}\) with \(\underline{\sigma } ({\mathfrak u}, x) \le s \le \overline{\sigma } ({\mathfrak u}, x)\). By definition of \(\sigma \), there exists \({\mathfrak p}\in {\mathfrak T}({\mathfrak u})\) with \({\mathrm{s}}({\mathfrak p}) = \underline{\sigma } ({\mathfrak u}, x)\) and \(x \in E({\mathfrak p})\), and there exists \({\mathfrak p}'' \in {\mathfrak T}({\mathfrak u})\) with \({\mathrm{s}}({\mathfrak p}'') = \overline{\sigma } ({\mathfrak u}, x)\) and \(x \in E({\mathfrak p}'') \subset {\mathcal{I}}({\mathfrak p}'')\). By property 2.0.7 of the dyadic grid, there exists a cube \(I \in \mathcal{D}\) of scale \(s\) with \(x \in I\). By property 2.0.13, there exists a tile \({\mathfrak p}' \in {\mathfrak P}(I)\) with \({Q}(x) \in {\Omega }({\mathfrak p}')\). By the dyadic property 2.0.8 we have \({\mathcal{I}}({\mathfrak p}) \subset {\mathcal{I}}({\mathfrak p}') \subset {\mathcal{I}}({\mathfrak p}'')\), and by 2.0.14, we have \({\Omega }({\mathfrak p}'') \subset {\Omega }({\mathfrak p}') \subset {\Omega }({\mathfrak p})\). Thus \({\mathfrak p}\le {\mathfrak p}' \le {\mathfrak p}''\), which gives with the convexity property 2.0.33 of \({\mathfrak T}({\mathfrak u})\) that \({\mathfrak p}' \in {\mathfrak T}({\mathfrak u})\), so \(s \in \sigma ({\mathfrak u}, x)\).

For a nonempty collection of tiles \(\mathfrak {S} \subset {\mathfrak P}\) we define

\[ \mathcal{J}_0(\mathfrak {S}) \]

to be the collection of all dyadic cubes \(J \in \mathcal{D}\) such that \(s(J) = -S\) or

\[ {\mathcal{I}}({\mathfrak p}) \not\subset B(c(J), 100D^{s(J) + 1}) \]

for all \({\mathfrak p}\in \mathfrak {S}\). We define \(\mathcal{J}(\mathfrak {S})\) to be the collection of inclusion maximal cubes in \(\mathcal{J}_0(\mathfrak {S})\).

We further define

\[ \mathcal{L}_0(\mathfrak {S}) \]

to be the collection of dyadic cubes \(L \in \mathcal{D}\) such that \(s(L) = -S\), or there exists \({\mathfrak p}\in \mathfrak {S}\) with \(L \subset {\mathcal{I}}({\mathfrak p})\) and there exists no \({\mathfrak p}\in \mathfrak {S}\) with \({\mathcal{I}}({\mathfrak p}) \subset L\). We define \(\mathcal{L}(\mathfrak {S})\) to be the collection of inclusion maximal cubes in \(\mathcal{L}_0(\mathfrak {S})\).

For each \(\mathfrak {S} \subset {\mathfrak P}\), we have

\begin{equation} \label{eq-J-partition} \bigcup _{I \in \mathcal{D}} I = \dot{\bigcup _{J \in \mathcal{J}(\mathfrak {S})}} J \end{equation}
7.1.1

and

\begin{equation} \label{eq-L-partition} \bigcup _{{\mathfrak p}\in \mathfrak {S}} {\mathcal{I}}({\mathfrak p}) = \dot{\bigcup _{L \in \mathcal{L}(\mathfrak {S})}} L\, . \end{equation}
7.1.2

Proof

Since \(\mathcal{J}(\mathfrak {S})\) is the set of inclusion maximal cubes in \(\mathcal{J}_0(\mathfrak {S})\), cubes in \(\mathcal{J}(\mathfrak {S})\) are pairwise disjoint by 2.0.8. The same applies to \(\mathcal{L}(\mathfrak {S})\).

If \(x \in \bigcup _{I \in \mathcal{D}} I\), then there exists by 2.0.7 a cube \(I \in \mathcal{D}\) with \(x \in I\) and \(s(I) = -S\). Then \(I \in \mathcal{J}_0(\mathfrak {S})\). There exists an inclusion maximal cube in \(\mathcal{J}_0(\mathfrak {S})\) containing \(I\). This cube contains \(x\) and is contained in \(\mathcal{J}(\mathfrak {S})\). This shows one inclusion in 7.1.1, the other one follows from \(\mathcal{J}(\mathfrak {S}) \subset \mathcal{D}\).

The proof of the two inclusions in 7.1.2 is similar.

For a finite collection of pairwise disjoint cubes \(\mathcal{C}\), define the projection operator

\[ P_{\mathcal{C}}f(x) :=\sum _{J\in \mathcal{C}}\mathbf{1}_J(x) \frac{1}{\mu (J)}\int _J f(y) \, \mathrm{d}\mu (y)\, . \]

Given a scale \(-S \le s\le S\) and a point \(x \in \bigcup _{I\in \mathcal{D}, s(I) = s} I\), there exists a unique cube in \(\mathcal{D}\) of scale \(s\) containing \(x\) by 2.0.7. We denote it by \(I_s(x)\). Define for \({\vartheta }\in {\Theta }\) the nontangential maximal operator

\begin{equation} \label{eq-TN-def} T_{\mathcal{N}}^{\vartheta }f(x) := \sup _{-S \le s_1 {\lt} S} \sup _{x' \in I_{s_1}(x)} \sup _{\substack {s_1 \le s_2 \le S\\ D^{s_2-1} \le R_Q({\vartheta }, x’)}} \left| \sum _{s = s_1}^{s_2} \int K_s(x',y) f(y) \, \mathrm{d}\mu (y) \right|\, . \end{equation}
7.1.3

Define for each \({\mathfrak u}\in {\mathfrak U}\) the auxiliary operator

\[ S_{1,{\mathfrak u}}f(x) \]

\begin{equation} \label{eq-def-S-op} :=\sum _{I\in \mathcal{D}} \mathbf{1}_{I}(x) \sum _{\substack {J\in \mathcal{J}({\mathfrak T}({\mathfrak u}))\\ J\subset B(c(I), 16 D^{s(I)})\\ s(J) \le s(I)}} \frac{D^{(s(J) - s(I))/a}}{\mu (B(c(I), 16D^{s(I)}))}\int _J |f(y)| \, \mathrm{d}\mu (y)\, . \end{equation}
7.1.4

Define also the collection of balls

\[ \mathcal{B} = \{ B(c(I), 2^s D^{s(I)}) \ : \ I \in \mathcal{D}\, , 0 \le s \le S + 5\} \, . \]

The following pointwise estimate for operators associated to sets \({\mathfrak T}({\mathfrak u})\) is the main result of this subsection.

Lemma 7.1.3 pointwise tree estimate

Let \({\mathfrak u}\in {\mathfrak U}\) and \(L \in \mathcal{L}({\mathfrak T}({\mathfrak u}))\). Let \(x, x' \in L\). Then for all bounded functions \(f\) with bounded support

\[ \left|\sum _{{\mathfrak p}\in {\mathfrak T}({\mathfrak u})} T_{{\mathfrak p}}[ e(-{\mathcal{Q}}({\mathfrak u}))f](x)\right| \]

\begin{equation} \label{eq-LJ-ptwise} \leq 2^{151a^3}(M_{\mathcal{B},1}+S_{1,{\mathfrak u}})P_{\mathcal{J}({\mathfrak T}({\mathfrak u}))}|f|(x')+|T_{\mathcal{N}}^{{\mathcal{Q}}({\mathfrak u})} P_{\mathcal{J}({\mathfrak T}({\mathfrak u}))}f(x')|, \end{equation}
7.1.5

Proof

By 2.0.21, if \(T_{{\mathfrak p}}[ e(-{\mathcal{Q}}({\mathfrak u}))f](x) \ne 0\), then \(x \in E({\mathfrak p})\). Combining this with \(|e({\mathcal{Q}}({\mathfrak u})(x)-{Q}(x)(x))| = 1\), we obtain

\[ |\sum _{{\mathfrak p}\in {\mathfrak T}({\mathfrak u})} T_{{\mathfrak p}}[ e(-{\mathcal{Q}}({\mathfrak u}))f](x)| \]
\begin{multline*} = \Bigg| \sum _{s \in \sigma ({\mathfrak u}, x)} \int e(-{\mathcal{Q}}({\mathfrak u})(y) + {Q}(x)(y) + {\mathcal{Q}}({\mathfrak u})(x) -{Q}(x)(x))\times \\ K_s(x,y)f(y) \, \mathrm{d}\mu (y) \Bigg|\, . \end{multline*}

Using the triangle inequality, we bound this by the sum of three terms:

\begin{multline} \label{eq-term-A} \le \Bigg| \sum _{s \in \sigma ({\mathfrak u}, x)} \int (e(-{\mathcal{Q}}({\mathfrak u})(y) + {Q}(x)(y) + {\mathcal{Q}}({\mathfrak u})(x) -{Q}(x)(x))-1)\times \\ K_s(x,y)f(y) \, \mathrm{d}\mu (y) \Bigg| \end{multline}

\begin{equation} \label{eq-term-B} + \Bigg| \sum _{s \in \sigma ({\mathfrak u}, x)} \int K_s(x,y) P_{\mathcal{J}({\mathfrak T}({\mathfrak u}))} f(y) \, \mathrm{d}\mu (y) \Bigg| \end{equation}
7.1.8

\begin{equation} \label{eq-term-C} + \Bigg| \sum _{s \in \sigma ({\mathfrak u}, x)} \int K_s(x,y) (f(y) - P_{\mathcal{J}({\mathfrak T}({\mathfrak u}))} f(y)) \, \mathrm{d}\mu (y) \Bigg|\, . \end{equation}
7.1.9

The proof is completed using the bounds for these three terms proven in Lemma 7.1.4, Lemma 7.1.5 and Lemma 7.1.6.

Lemma 7.1.4 first tree pointwise

For all \({\mathfrak u}\in {\mathfrak U}\), all \(L \in \mathcal{L}({\mathfrak T}({\mathfrak u}))\), all \(x, x' \in L\) and all bounded \(f\) with bounded support, we have

\[ \eqref{eq-term-A} \le 10 \cdot 2^{105a^3} M_{\mathcal{B}, 1}P_{\mathcal{J}({\mathfrak T}({\mathfrak u}))}|f|(x')\, . \]
Proof

Let \(s \in \sigma ({\mathfrak u},x)\). If \(x, y \in X\) are such that \(K_s(x,y)\neq 0\), then, by 2.1.2, we have \(\rho (x,y)\leq 1/2 D^s\). By \(1\)-Lipschitz continuity of the function \(t \mapsto \exp (it) = e(t)\) and the property 1.0.7 of the metrics \(d_B\), it follows that

\begin{multline*} |e(-{\mathcal{Q}}({\mathfrak u})(y)+{Q}(x)(y)+{\mathcal{Q}}({\mathfrak u})(x)-{Q}(x)(x))-1|\\ \leq d_{B(x, 1/2 D^{s})}({\mathcal{Q}}({\mathfrak u}), {Q}(x))\, . \end{multline*}

Let \({\mathfrak p}_s \in {\mathfrak T}({\mathfrak u})\) be a tile with \({\mathrm{s}}({\mathfrak p}_s) = s\) and \(x \in E({\mathfrak p}_s)\), and let \({\mathfrak p}'\) be a tile with \({\mathrm{s}}({\mathfrak p}') = \overline{\sigma }({\mathfrak u}, x)\) and \(x \in E({\mathfrak p}')\). Using the doubling property 1.0.8, the definition of \(d_{{\mathfrak p}}\) and Lemma 2.1.2, we can bound the previous display by

\[ 2^a d_{{\mathfrak p}_s}({\mathcal{Q}}({\mathfrak u}), {Q}(x)) \le 2^{a} 2^{s - \overline{\sigma }({\mathfrak u}, x)} d_{{\mathfrak p}'}({\mathcal{Q}}({\mathfrak u}), {Q}(x))\, . \]

Since \({\mathcal{Q}}({\mathfrak u}) \in B_{{\mathfrak p}'}({\mathcal{Q}}({\mathfrak p}'), 4)\) by 2.0.32 and \({Q}(x) \in \Omega ({\mathfrak p}') \subset B_{{\mathfrak p}'}({\mathcal{Q}}({\mathfrak p}'), 1)\) by 2.0.15, this is estimated by

\[ \le 5 \cdot 2^{a} 2^{s - \overline{\sigma }({\mathfrak u}, x)} \, . \]

Using 2.1.3, it follows that

\[ \eqref{eq-term-A} \le 5\cdot 2^{103a^3} \sum _{s\in \sigma (x)}2^{s - \overline{\sigma }({\mathfrak u}, x)} \frac{1}{\mu (B(x,D^s))}\int _{B(x,0.5D^{s})}|f(y)|\, \mathrm{d}\mu (y)\, . \]

By 7.1.1, the collection \(\mathcal{J}\) is a partition of \(X\), so this is estimated by

\[ 5\cdot 2^{103a^3} \sum _{s\in \sigma (x)}2^{s - \overline{\sigma }({\mathfrak u}, x)} \frac{1}{\mu (B(x,D^s))}\sum _{\substack {J \in \mathcal{J}({\mathfrak T}({\mathfrak u}))\\ J \cap B(x, 0.5D^s) \ne \emptyset } }\int _{J}|f(y)|\, \mathrm{d}\mu (y)\, . \]

This expression does not change if we replace \(|f|\) by \(P_{\mathcal{J}({\mathfrak T}({\mathfrak u}))}|f|\).

Let \(J \in \mathcal{J}({\mathfrak T}({\mathfrak u}))\) with \(B(x, 0.5 D^s) \cap J \ne \emptyset \). By the triangle inequality and since \(x \in E({\mathfrak p}_s) \subset B({\mathrm{c}}({\mathfrak p}_s), 4D^{s})\), it follows that \(B({\mathrm{c}}({\mathfrak p}_s), 4.5D^s) \cap J \ne \emptyset \). If \(s(J) \ge s\) and \(s(J) {\gt} -S\), then it follows from the triangle inequality, 2.0.10 and 2.0.1 that \({\mathcal{I}}({\mathfrak p}_s) \subset B(c(J), 100 D^{s(J)+1})\), contradicting \(J \in \mathcal{J}(\mathfrak {T}({\mathfrak u}))\). Thus \(s(J) \le s - 1\) or \(s(J) = -S\). If \(s(J) = -S\) and \(s(J) {\gt} s - 1\), then \(s = -S\). Thus we always have \(s(J) \le s\). It then follows from the triangle inequality and 2.0.10 that \(J \subset B({\mathrm{c}}({\mathfrak p}_s), 16 D^s)\).

Thus we can continue our chain of estimates with

\[ 5\cdot 2^{103a^3} \sum _{s\in \sigma (x)}2^{s - \overline{\sigma }({\mathfrak u}, x)} \frac{1}{\mu (B(x,D^s))}\int _{B({\mathrm{c}}({\mathfrak p}_s),16 D^s)}P_{\mathcal{J}({\mathfrak T}({\mathfrak u}))}|f(y)|\, \mathrm{d}\mu (y)\, . \]

We have \(B({\mathrm{c}}({\mathfrak p}_s), 16D^s)) \subset B(x, 32D^s)\), by 2.0.10 and the triangle inequality, since \(x \in {\mathcal{I}}({\mathfrak p})\). Combining this with the doubling property 1.0.5, we obtain

\[ \mu (B({\mathrm{c}}({\mathfrak p}_s), 16D^s)) \le 2^{5a} \mu (B(x, D^s))\, . \]

Since \(a \ge 4\), it follows that 7.1.6 is bounded by

\[ 2^{104a^3} \sum _{s\in \sigma (x)}2^{s - \overline{\sigma }({\mathfrak u}, x)} \frac{1}{\mu (B({\mathrm{c}}({\mathfrak p}_s),16D^s))}\int _{B({\mathrm{c}}({\mathfrak p}_s),16D^s)}P_{\mathcal{J}({\mathfrak T}({\mathfrak u}))}|f(y)|\, \mathrm{d}\mu (y)\, . \]

Since \(L \in \mathcal{L}({\mathfrak T}({\mathfrak u}))\), we have \(s(L) \le {\mathrm{s}}({\mathfrak p})\) for all \({\mathfrak p}\in {\mathfrak T}({\mathfrak u})\). Since \(x\in L \cap {\mathcal{I}}({\mathfrak p}_s)\), it follows by 2.0.8 that \(L \subset {\mathcal{I}}({\mathfrak p}_s)\), in particular \(x' \in {\mathcal{I}}({\mathfrak p}_s) \subset B({\mathrm{c}}({\mathfrak p}_s), 16D^s)\). Thus

\[ \le 2^{104a^3} \sum _{s\in \sigma (x)}2^{s - \overline{\sigma }({\mathfrak u}, x)} M_{\mathcal{B}, 1}P_{\mathcal{J}({\mathfrak T}({\mathfrak u}))}|f|(x') \]
\[ \le 2^{105a^3} M_{\mathcal{B}, 1}P_{\mathcal{J}({\mathfrak T}({\mathfrak u}))}|f|(x')\, . \]

This completes the estimate for term 7.1.6.

Lemma 7.1.5 second tree pointwise

For all \({\mathfrak u}\in {\mathfrak U}\), all \(L \in \mathcal{L}({\mathfrak T}({\mathfrak u}))\), all \(x, x' \in L\) and all bounded \(f\) with bounded support, we have

\[ \Bigg| \sum _{s \in \sigma ({\mathfrak u}, x)} \int K_s(x,y) P_{\mathcal{J}({\mathfrak T}({\mathfrak u}))} f(y) \, \mathrm{d}\mu (y) \Bigg| \le T_{\mathcal{N}}^{{\mathcal{Q}}({\mathfrak u})} P_{\mathcal{J}({\mathfrak T}({\mathfrak u}))} f(x')\, . \]
Proof

Let \(s_1 = \underline{\sigma }({\mathfrak u}, x)\). By definition, there exists a tile \({\mathfrak p}\in {\mathfrak T}({\mathfrak u})\) with \({\mathrm{s}}({\mathfrak p}) = s_1\) and \(x \in E({\mathfrak p})\). Then \(x \in {\mathcal{I}}({\mathfrak p}) \cap L\). By 2.0.8 and the definition of \(\mathcal{L}({\mathfrak T}({\mathfrak u}))\), it follows that \(L \subset {\mathcal{I}}({\mathfrak p})\), in particular \(x' \in {\mathcal{I}}({\mathfrak p})\), so \(x \in I_{s_1}(x')\). Next, let \(s_2 = \overline{\sigma }({\mathfrak u}, x)\) and let \({\mathfrak p}' \in {\mathfrak T}({\mathfrak u})\) with \({\mathrm{s}}({\mathfrak p}') = s_2\) and \(x \in E({\mathfrak p}')\). Since \({\mathfrak p}' \in {\mathfrak T}({\mathfrak u})\), we have \(4{\mathfrak p}' \lesssim {\mathfrak u}\). Since \({Q}(x) \in {\Omega }({\mathfrak p}')\), it follows that

\[ d_{{\mathfrak p}}({\mathcal{Q}}({\mathfrak u}), {Q}(x)) \le 5\, . \]

Applying the doubling property 1.0.8 five times, we obtain

\[ d_{B(c({\mathfrak p}), 8D^{s_2})}({\mathcal{Q}}({\mathfrak u}), {Q}(x)) \le 5 \cdot 2^{5a}\, . \]

By the triangle inequality, we have \(B(x, D^{s_2}) \subset B(c({\mathfrak p}), 8 D^{s_2})\), so by 1.0.9

\[ d_{B(x, D^{s_2})}({\mathcal{Q}}({\mathfrak u}), {Q}(x)) \le 5 \cdot 2^{5a}\, . \]

Finally, by applying 1.0.10 \(100a\) times, we obtain

\[ d_{B(x, D^{s_2-1})}({\mathcal{Q}}({\mathfrak u}), {Q}(x)) \le 5 \cdot 2^{-95a} {\lt} 1\, . \]

Consequently, \(D^{s_2 - 1} {\lt} R_Q({\mathcal{Q}}({\mathfrak u}), x)\). The lemma now follows from the definition of \(T_{\mathcal{N}}\).

Lemma 7.1.6 third tree pointwise
#

For all \({\mathfrak u}\in {\mathfrak U}\), all \(L \in \mathcal{L}({\mathfrak T}({\mathfrak u}))\), all \(x, x' \in L\) and all bounded \(f\) with bounded support, we have

\begin{equation*} \Bigg| \sum _{s \in \sigma ({\mathfrak u}, x)} \int K_s(x,y) (f(y) - P_{\mathcal{J}({\mathfrak T}({\mathfrak u}))} f(y)) \, \mathrm{d}\mu (y) \Bigg| \end{equation*}
\begin{equation*} \le 2^{151a^3} S_{1,{\mathfrak u}} P_{\mathcal{J}({\mathfrak T}({\mathfrak u}))}|f|(x’)\, . \end{equation*}
Proof

We have for \(J \in \mathcal{J}({\mathfrak T}({\mathfrak u}))\):

\[ \int _J K_{s}(x,y)(1 - P_{\mathcal{J}({\mathfrak T}({\mathfrak u}))})f(y) \, \mathrm{d}\mu (y) \]

\begin{equation} \label{eq-canc-comp} = \int _J \frac{1}{\mu (J)} \int _J K_s(x,y) - K_s(x,z) \, \mathrm{d}\mu (z) \, f(y) \, \mathrm{d}\mu (y)\, . \end{equation}
7.1.10

By 2.1.4 and 2.0.10, we have for \(y, z \in J\)

\[ |K_s(x,y) - K_s(x,z)| \le \frac{2^{150a^3}}{\mu (B(x, D^s))} \left(\frac{8 D^{s(J)}}{D^s}\right)^{1/a}\, . \]

Suppose that \(s \in \sigma ({\mathfrak u}, x)\). If \(K_s(x,y) \ne 0\) for some \(y \in J \in \mathcal{J}({\mathfrak T}({\mathfrak u}))\) then, by 2.1.2, \(y \in B(x, 0.5 D^s) \cap J \ne \emptyset \). Let \({\mathfrak p}\in {\mathfrak T}({\mathfrak u})\) with \({\mathrm{s}}({\mathfrak p}) = s\) and \(x \in E({\mathfrak p})\). Then \(B({\mathrm{c}}({\mathfrak p}_s), 4.5D^s) \cap J \ne \emptyset \) by the triangle inequality. If \(s(J) \ge s\) and \(s(J) {\gt} -S\), then it follows from the triangle inequality, 2.0.10 and 2.0.1 that \({\mathcal{I}}({\mathfrak p}) \subset B(c(J), 100 D^{s(J)+1})\), contradicting \(J \in \mathcal{J}(\mathfrak {T}({\mathfrak u}))\). Thus \(s(J) \le s - 1\) or \(s(J) = -S\). If \(s(J) = -S\) and \(s(J) {\gt} s - 1\), then \(s = -S\). So in both cases, \(s(J) \le s\). It then follows from the triangle inequality and 2.0.10 that \(J \subset B(x, 16 D^s)\).

Thus, we can estimate 7.1.9 by

\[ 2^{150a^3 + 3/a}\sum _{{\mathfrak p}\in \mathfrak {T}}\frac{\mathbf{1}_{E({\mathfrak p})}(x)}{\mu (B(x,D^{{\mathrm{s}}({\mathfrak p})}))}\sum _{\substack {J\in \mathcal{J}({\mathfrak T}({\mathfrak u}))\\ J\subset B(x, 16D^{{\mathrm{s}}({\mathfrak p})})\\ s(J) \le {\mathrm{s}}({\mathfrak p})}} D^{(s(J) - {\mathrm{s}}({\mathfrak p}))/a} \int _J |f|\, . \]
\[ = 2^{150a^3 + 3/a}\sum _{I \in \mathcal{D}} \sum _{\substack {{\mathfrak p}\in \mathfrak {T}\\ {\mathcal{I}}({\mathfrak p}) = I}}\frac{\mathbf{1}_{E({\mathfrak p})}(x)}{\mu (B(x, D^{s(I)}))}\sum _{\substack {J\in \mathcal{J}({\mathfrak T}({\mathfrak u}))\\ J\subset B(x, 16 D^{s(I)})\\ s(J) \le s(I)}} D^{(s(J) - s(I))/a} \int _J |f|\, . \]

By 2.0.13 and 2.0.20, the sets \(E({\mathfrak p})\) for tiles \({\mathfrak p}\) with \({\mathcal{I}}({\mathfrak p}) = I\) are pairwise disjoint. It follows from the definition of \(\mathcal{L}({\mathfrak T}({\mathfrak u}))\) that \(x \in {\mathcal{I}}({\mathfrak p})\) if and only if \(x' \in {\mathcal{I}}({\mathfrak p})\), thus we can estimate the sum over \(\mathbf{1}_{E({\mathfrak p})}(x)\) by \(\mathbf{1}_{I}(x')\). If \(x \in E({\mathfrak p})\) then in particular \(x \in {\mathcal{I}}({\mathfrak p})\), so by 2.0.10 \(B(c(I),16D^{s(I)}) \subset B(x, 32D^{s(I)})\). By the doubling property 1.0.5

\[ \mu (B(c(I), 16D^{s(I)})) \le 2^{5a} \mu (B(x, D^{s(I)}))\, . \]

Since \(a \ge 4\) we can continue our estimate with

\[ \le 2^{151a^3}\sum _{I \in \mathcal{D}} \frac{\mathbf{1}_{I}(x')}{\mu (B(c(I), 16D^{s(I)}))}\sum _{\substack {J\in \mathcal{J}({\mathfrak T}({\mathfrak u}))\\ J\subset B(x, 16 D^{s(I)})\\ s(J) \le s(I)}} D^{(s(J) - s(I))/a} \int _J |f| \]
\[ = 2^{151a^3} S_{1,{\mathfrak u}} P_{\mathcal{J}({\mathfrak T}({\mathfrak u}))}|f|(x')\, . \]

This completes the proof.

7.2 An auxiliary \(L^2\) tree estimate

In this subsection we prove the following estimate on \(L^2\) for operators associated to trees.

Lemma 7.2.1 tree projection estimate

Let \({\mathfrak u}\in {\mathfrak U}\). Then we have for all \(f, g\) bounded with bounded support

\[ \Bigg|\int _X \sum _{{\mathfrak p}\in {\mathfrak T}({\mathfrak u})} \bar g(y) T_{{\mathfrak p}}f(y) \, \mathrm{d}\mu (y) \Bigg| \]

\begin{equation} \label{eq-tree-est} \le 2^{104a^3}\| P_{\mathcal{J}({\mathfrak T}({\mathfrak u}))}|f|\| _{2}\| P_{\mathcal{L}({\mathfrak T}({\mathfrak u}))}|g|\| _{2}. \end{equation}
7.2.1

Below, we deduce Lemma 7.2.1 from Lemma 7.1.3 and the following estimates for the operators in Lemma 7.1.3.

Lemma 7.2.2 nontangential operator bound

For all bounded \(f\) with bounded supportand all \({\vartheta }\in {\Theta }\)

\[ \| T_{\mathcal{N}}^{{\vartheta }} f\| _2 \le 2^{103a^3} \| f\| _2\, . \]
Lemma 7.2.3 boundary operator bound

For all \({\mathfrak u}\in {\mathfrak U}\) and all bounded functions \(f\) with bounded support

\begin{equation} \label{eq-S-bound} \| S_{1,{\mathfrak u}}f\| _2 \le 2^{12a} \| f\| _2\, . \end{equation}
7.2.2

Proof of Lemma 7.2.1

Let \(L \in \mathcal{L}({\mathfrak T}({\mathfrak u}))\). We apply Lemma 7.1.3 to \(e({\mathcal{Q}}({\mathfrak u})) f\) to obtain for all \(y, x' \in L\)

\[ \Bigg| \sum _{{\mathfrak p}\in {\mathfrak T}({\mathfrak u})} T_{{\mathfrak p}} f(y) \Bigg| \]
\[ \le 2^{151a^3} ((M_{\mathcal{B},1}+S_{1,{\mathfrak u}})P_{\mathcal{J}({\mathfrak T}({\mathfrak u}))}|f|(x')+|T_{\mathcal{N}}^{{\mathcal{Q}}({\mathfrak u})}P_{\mathcal{J}({\mathfrak T}({\mathfrak u}))}[e({\mathcal{Q}}({\mathfrak u}))f](x')| )\, . \]

Hence, by taking an infimum, we have for \(y \in L\)

\[ \Bigg| \sum _{{\mathfrak p}\in {\mathfrak T}({\mathfrak u})} T_{{\mathfrak p}} f(y) \Bigg| \]
\[ \le 2^{151a^3} \inf _{x' \in L} ((M_{\mathcal{B},1}+S_{1,{\mathfrak u}})P_{\mathcal{J}({\mathfrak T}({\mathfrak u}))}|f|(x')+|T_{\mathcal{N}}^{{\mathcal{Q}}({\mathfrak u})}P_{\mathcal{J}({\mathfrak T}({\mathfrak u}))}[e({\mathcal{Q}}({\mathfrak u}))f](x')| )\, . \]

Integrating this estimate yields

\[ \int _L |g(y)| \Bigg| \sum _{{\mathfrak p}\in {\mathfrak T}({\mathfrak u})} T_{{\mathfrak p}} f(y) \Bigg| \, \mathrm{d}\mu (y) \]
\[ \le 2^{151a^3} \int _L |g(y)| \inf _{x' \in L}((M_{\mathcal{B},1}+S_{1,{\mathfrak u}})P_{\mathcal{J}({\mathfrak T}({\mathfrak u}))}|f|(x')+|T_{\mathcal{N}}^{{\mathcal{Q}}({\mathfrak u})}P_{\mathcal{J}({\mathfrak T}({\mathfrak u}))}[e({\mathcal{Q}}({\mathfrak u}))f](x')| ) \, \mathrm{d}\mu (y) \]
\begin{multline*} \le 2^{151a^3} \int _L |g(y)| \, \mathrm{d}\mu (y)\times \\ \int _L 2((M_{\mathcal{B},1}+S_{1,{\mathfrak u}})P_{\mathcal{J}({\mathfrak T}({\mathfrak u}))}|f|(y)+|T_{\mathcal{N}}^{{\mathcal{Q}}({\mathfrak u})}P_{\mathcal{J}({\mathfrak T}({\mathfrak u}))}[e({\mathcal{Q}}({\mathfrak u}))f](y)| ) \, \mathrm{d}\mu (y) \end{multline*}
\begin{multline*} = 2^{151a^3 } \int _L P_{\mathcal{L}({\mathfrak T}({\mathfrak u}))}|g|(y)\times \\ ((M_{\mathcal{B},1}+S_{1,{\mathfrak u}})P_{\mathcal{J}({\mathfrak T}({\mathfrak u}))}|f|(y)+|T_{\mathcal{N}}^{{\mathcal{Q}}({\mathfrak u})}P_{\mathcal{J}({\mathfrak T}({\mathfrak u}))}[e({\mathcal{Q}}({\mathfrak u}))f](y)| ) \, \mathrm{d}\mu (y)\, . \end{multline*}

By 2.0.21, we have \(T_{{\mathfrak p}} f = \mathbf{1}_{{\mathcal{I}}({\mathfrak p})} T_{{\mathfrak p}} f\) for all \({\mathfrak p}\in {\mathfrak P}\), so

\[ \Bigg| \int \bar g(y) \sum _{{\mathfrak p}\in {\mathfrak T}({\mathfrak u})} T_{{\mathfrak p}} f(y) \, \mathrm{d}\mu (y) \Bigg| = \Bigg| \int _{\bigcup _{{\mathfrak p}\in {\mathfrak T}({\mathfrak u})} {\mathcal{I}}({\mathfrak p})} \bar g(y) \sum _{{\mathfrak p}\in {\mathfrak T}({\mathfrak u})} T_{{\mathfrak p}} f(y) \, \mathrm{d}\mu (y) \Bigg|\, . \]

Since \(\mathcal{L}({\mathfrak T}({\mathfrak u}))\) partitions \(\bigcup _{{\mathfrak p}\in {\mathfrak T}({\mathfrak u})} {\mathcal{I}}({\mathfrak p})\) by Lemma 7.1.2, we get from the triangle inequality

\[ \le \sum _{L \in \mathcal{L}({\mathfrak T}({\mathfrak u}))} \int _L |g(y)| \Bigg| \sum _{{\mathfrak p}\in {\mathfrak T}({\mathfrak u})} T_{{\mathfrak p}} f(y) \Bigg| \, \mathrm{d}\mu (y) \]

which by the above computation is bounded by

\begin{multline*} 2^{151a^3} \sum _{L \in \mathcal{L}({\mathfrak T}({\mathfrak u}))} \int _L P_{\mathcal{L}({\mathfrak T}({\mathfrak u}))}|g|(y) \times \\ ((M_{\mathcal{B},1}+S_{1,{\mathfrak u}})P_{\mathcal{J}({\mathfrak T}({\mathfrak u}))}|f|(y)+|T_{\mathcal{N}}^{{\mathcal{Q}}({\mathfrak u})}P_{\mathcal{J}({\mathfrak T}({\mathfrak u}))}[e({\mathcal{Q}}({\mathfrak u}))f](y)| ) \, \mathrm{d}\mu (y) \end{multline*}
\begin{multline*} = 2^{151a^3} \int _X P_{\mathcal{L}({\mathfrak T}({\mathfrak u}))}|g|(y)\times \\ ((M_{\mathcal{B},1}+S_{1,{\mathfrak u}})P_{\mathcal{J}({\mathfrak T}({\mathfrak u}))}|f|(y)+|T_{\mathcal{N}}^{{\mathcal{Q}}({\mathfrak u})}P_{\mathcal{J}({\mathfrak T}({\mathfrak u}))}[e({\mathcal{Q}}({\mathfrak u}))f](y)| ) \, \mathrm{d}\mu (y)\, . \end{multline*}

Applying Cauchy-Schwarz and Minkowski’s inequality, this is bounded by

\begin{multline*} 2^{151a^3} \| P_{\mathcal{L}({\mathfrak T}({\mathfrak u}))}|g|\| _2 \times \\ (\| M_{\mathcal{B},1}P_{\mathcal{J}({\mathfrak T}({\mathfrak u}))}|f|\| _2 + \| S_{1,{\mathfrak u}}P_{\mathcal{J}({\mathfrak T}({\mathfrak u}))}|f|\| _2 + \| T_{\mathcal{N}}^{{\mathcal{Q}}({\mathfrak u})}P_{\mathcal{J}({\mathfrak T}({\mathfrak u}))}[e({\mathcal{Q}}({\mathfrak u}))f](y)|\| _2)\, . \end{multline*}

By Proposition 2.0.6, Lemma 7.2.2 and Lemma 7.2.3, the second factor is at most

\[ (2^{2a+1} + 2^{12a})\| P_{\mathcal{J}({\mathfrak T}({\mathfrak u}))}|f|\| _2 + 2^{103a^3} \| P_{\mathcal{J}({\mathfrak T}({\mathfrak u}))}[e({\mathcal{Q}}({\mathfrak u}))f]\| _2\, . \]

By the triangle inequality we have for all \(x \in X\) that \(|P_{\mathcal{J}({\mathfrak T}({\mathfrak u}))}[e({\mathcal{Q}}({\mathfrak u}))f]|(x) \le P_{\mathcal{J}({\mathfrak T}({\mathfrak u}))}|f|(x)\), thus we can further estimate the above by

\[ (2^{2a+1} + 2^{12a} + 2^{103a^3}) \| P_{\mathcal{J}({\mathfrak T}({\mathfrak u}))}|f|\| _2\, . \]

This completes the proof since \(a \ge 4\).

Now we prove the two auxiliary lemmas. We begin with the nontangential maximal operator \(T_{\mathcal{N}}\).

Proof of Lemma 7.2.2

Fix \(s_1, s_2\). By 2.0.4 we have for all \(x \in (0, \infty )\)

\[ \sum _{s = s_1}^{s_2} \psi (D^{-s}x) = 1 - \sum _{s {\lt} s_1} \psi (D^{-s}x) - \sum _{s {\gt} s_1} \psi (D^{-s}x)\, . \]

Since \(\psi \) is supported in \([\frac{1}{4D}, \frac{1}{2}]\), the two sums on the right hand side are zero for all \(x \in [\frac{1}{2}D^{s_1-1}, \frac{1}{4} D^{s_2 - 1}]\), hence

\[ x \in [\frac{1}{2}D^{s_1-1}, \frac{1}{4} D^{s_2}] \implies \sum _{s = s_1}^{s_2} \psi (D^{-s}x) = 1\, . \]

Since \(\psi \) is supported in \([\frac{1}{4D}, \frac{1}{2}]\), we further have

\[ x \notin [\frac{1}{4}D^{s_1 - 1}, \frac{1}{2}D^{s_2}] \implies \sum _{s = s_1}^{s_2} \psi (D^{-s}x) = 0\, . \]

Finally, since \(\psi \ge 0\) and \(\sum _{s \in \mathbb {Z}} \psi (D^{-s}x) = 1\), we have for all \(x\)

\[ 0 \le \sum _{s = s_1}^{s_2} \psi (D^{-s}x) \le 1\, . \]

Let \(x' \in I_{s_1}(x)\) and suppose that \(D^{s_2 - 1} \le R_Q({\vartheta }, x')\). By the triangle inequality and 2.0.10, it holds that \(\rho (x,x') \le 8D^{s_1}\). We have

\[ \Bigg|\sum _{s = s_1}^{s_2} \int K_s(x',y) f(y) \, \mathrm{d}\mu (y)\Bigg| \]
\[ = \Bigg|\int \sum _{s = s_1}^{s_2} \psi (D^{-s}\rho (x',y)) K(x',y) f(y) \, \mathrm{d}\mu (y)\Bigg| \]

\begin{equation} \label{eq-sharp-trunc-term} \le \Bigg| \int _{8D^{s_1} \le \rho (x',y) \le \frac{1}{4}D^{s_2-1}} K(x',y) f(y) \, \mathrm{d}\mu (y) \Bigg| \end{equation}
7.2.3

\begin{equation} \label{eq-lower-bound-term} + \int _{\frac{1}{4}D^{s_1-1} \le \rho (x',y) \le 8D^{s_1}} |K(x', y)| |f(y)| \, \mathrm{d}\mu (y) \end{equation}
7.2.4

\begin{equation} \label{eq-upper-bound-term} + \int _{\frac{1}{4}D^{s_2-1} \le \rho (x',y) \le \frac{1}{2}D^{s_2}} |K(x', y)| |f(y)| \, \mathrm{d}\mu (y)\, . \end{equation}
7.2.5

The first term 7.2.3 is at most \(2T_{{Q}}^{\vartheta }f(x)\) , using with \(R_1:=8D^{s_1}\) and \(R_2:=\frac{1}{4}D^{s_2-1}\) and

\begin{equation} R_1 \le R_2{\lt}R_{{Q}}({\vartheta },x') \end{equation}
7.2.6

the triangle inequality in the form

\begin{equation} \sup _{\rho (x,x'){\lt}R_1} \left|\int _{R_1{\lt} \rho (x',y) {\lt} R_2} K(x',y) f(y) \, \mathrm{d}\mu (y) \right| \end{equation}
7.2.7

\begin{equation} \le \sup _{\rho (x,x'){\lt}R_1} \left|\int _{R_1{\lt} \rho (x',y) {\lt} R_{{Q}}({\vartheta },x')} K(x',y) f(y) \, \mathrm{d}\mu (y) \right| \end{equation}
7.2.8

\begin{equation} + \sup _{\rho (x,x'){\lt}R_1} \left|\int _{R_2{\lt} \rho (x',y) {\lt} R_{{Q}}({\vartheta },x')} K(x',y) f(y) \, \mathrm{d}\mu (y) \right| \end{equation}
7.2.9

and making the second term larger by replacing the constraint \(\rho (x,x'){\lt}R_1\) by the constraint \(\rho (x,x'){\lt}R_2\).

The other two terms will be estimated by the finitary maximal function from Proposition 2.0.6. For the second term 7.2.4 we use 1.0.14 which implies that for all \(y\) with \(\rho (x', y) \ge \frac{1}{4}D^{s_1 - 1}\), we have

\[ |K(x', y)| \le \frac{2^{a^3}}{\mu (B(x', \frac{1}{4}D^{s_1 - 1}))}\, . \]

Using \(D=2^{100a^2}\) and the doubling property 1.0.5 \(6 +100a^2\) times estimates the last display by

\begin{equation} \label{pf-nontangential-operator-bound-imeq} \le \frac{2^{6a+101a^3}}{\mu (B(x', 16D^{s_1}))}\, . \end{equation}
7.2.10

By the triangle inequality and 2.0.10, we have

\[ B(x', 8D^{s_1}) \subset B(c(I_{s_1}(x)), 16D^{s(I_{s_1}(x))})\, . \]

Combining this with 7.2.10, we conclude that 7.2.4 is at most

\[ 2^{6a + 101a^3} M_{\mathcal{B},1} f(x)\, . \]

For 7.2.5 we argue similarly. We have for all \(y\) with \(\rho (x', y) \ge \frac{1}{4}D^{s_2}\)

\[ |K(x', y)| \le \frac{2^{a^3}}{\mu (B(x', \frac{1}{4}D^{s_2}))}\, . \]

Using the doubling property 1.0.5 \(6 + 100a^2\) times estimates the last display by

\begin{equation} \le \frac{2^{6a + 101a^3}}{\mu (B(x', 16 D^{s_2}))}\, . \end{equation}
7.2.11

Note that by 2.0.8 we have \(I_{s_1}(x) \subset I_{s_2}(x)\), in particular \(x' \in I_{s_2}(x)\). By the triangle inequality and 2.0.10, we have

\[ B(x', 8D^{s_2}) \subset B(c(I_{s_2}(x)), 16D^{s(I_{s_2}(x))})\, . \]

Combining this, 7.2.5 is at most

\[ 2^{6a+101a^3} M_{\mathcal{B},1} f(x)\, . \]

Using \(a \ge 4\), taking a supremum over all \(x' \in I_{s_1}(x)\) and then a supremum over all \(-S \le s_1 {\lt} s_2 \le S\), we obtain

\[ T_{\mathcal{N}} f(x) \le T_*f(x) + 2^{102a^3} M_{\mathcal{B},1} f(x)\, . \]

The lemma now follows from assumption 1.0.18, Proposition 2.0.6 and \(a \ge 4\).

We need the following lemma to prepare the \(L^2\)-estimate for the auxiliary operators \(S_{1, {\mathfrak u}}\).

Lemma 7.2.4 boundary overlap
#

For every cube \(I \in \mathcal{D}\), there exist at most \(2^{9a}\) cubes \(J \in \mathcal{D}\) with \(s(J) = s(I)\) and \(B(c(I), 16D^{s(I)}) \cap B(c(J), 16 D^{s(J)}) \ne \emptyset \).

Proof

Suppose that \(B(c(I), 16 D^{s(I)}) \cap B(c(J), 16 D^{s(J)}) \ne \emptyset \) and \(s(I) = s(J)\). Then \(B(c(I), 33 D^{s(I)}) \subset B(c(J), 128 D^{s(J)})\). Hence by the doubling property 1.0.5

\[ 2^{9a}\mu (B(c(J), \frac{1}{4}D^{s(J)})) \ge \mu (B(c(I), 33 D^{s(I)}))\, , \]

and by the triangle inequality, the ball \(B(c(J), \frac{1}{4}D^{s(J)})\) is contained in \(B(c(I), 33 D^{s(I)})\).

If \(\mathcal{C}\) is any finite collection of cubes \(J \in \mathcal{D}\) satisfying \(s(J) = s(I)\) and

\begin{equation*} B(c(I), 16 D^{s(I)}) \cap B(c(J), 16 D^{s(J)}) \ne \emptyset \ , \end{equation*}

then it follows from 2.0.10 and pairwise disjointedness of cubes of the same scale 2.0.8 that the balls \(B(c(J), \frac{1}{4} D^{s(J)})\) are pairwise disjoint. Hence

\begin{align*} \mu (B(c(I), 33 D^{s(I)})) & \ge \sum _{J \in \mathcal{C}} \mu (B(c(J), \frac{1}{4}D^{s(J)}))\\ & \ge |\mathcal{C}| 2^{-9a} \mu (B(c(I), 33 D^{s(I)}))\, . \end{align*}

Since \(\mu \) is doubling and \(\mu \ne 0\), we have \(\mu (B(c(I), 33D^{s(I)})) {\gt} 0\). The lemma follows after dividing by \(2^{-9a}\mu (B(c(I), 33D^{s(I)}))\).

Now we can bound the operators \(S_{1, {\mathfrak u}}\).

Proof of Lemma 7.2.3

Note that by definition, \(S_{1,{\mathfrak u}}f\) is a finite sum of indicator functions of cubes \(I \in \mathcal{D}\) for each locally integrable \(f\), and hence is bounded, has bounded support and is integrable. Let \(g\) be another function with the same three properties. Then \(\bar g S_{1,{\mathfrak u}}f\) is integrable, and we have

\[ \Bigg|\int \bar g(y) S_{1,{\mathfrak u}}f(y) \, \mathrm{d}\mu (y)\Bigg| \]
\begin{multline*} = \Bigg|\sum _{I\in \mathcal{D}} \frac{1}{\mu (B(c(I), 16 D^{s(I)}))} \int _I \bar g(y) \, \mathrm{d}\mu (y)\\ \times \sum _{\substack {J\in \mathcal{J}({\mathfrak T}({\mathfrak u}))\, :\, J\subseteq B(c(I), 16 D^{s(I)})\\ \begin{bgroup} s(J)\le s(I) \end{bgroup}}} D^{(s(J)-s(I))/a}\int _J |f(y)| \, \mathrm{d}\mu (y)\Bigg| \end{multline*}
\begin{multline*} \le \sum _{I\in \mathcal{D}} \frac{1}{\mu (B(c(I), 16D^{s(I)}))} \int _{B(c(I), 16D^{s(I)})} | g(y)| \, \mathrm{d}\mu (y)\\ \times \sum _{\substack {J\in \mathcal{J}({\mathfrak T}({\mathfrak u}))\, :\, J\subseteq B(c(I), 16 D^{s(I)})\\ \begin{bgroup} s(J) \le s(I) \end{bgroup}}} D^{(s(J)-s(I))/a}\int _J |f(y)| \, \mathrm{d}\mu (y)\, . \end{multline*}

Changing the order of summation and using \(J \subset B(c(I), 16 D^{s(I)})\) to bound the first average integral by \(M_{\mathcal{B},1}|g|(y)\) for any \(y \in J\), we obtain

\begin{align} \label{eq-boundary-operator-bound-1} \le \sum _{J\in \mathcal{J}({\mathfrak T}({\mathfrak u}))}\int _J|f(y)| M_{\mathcal{B},1}|g|(y) \, \mathrm{d}\mu (y) \sum _{\substack {I \in \mathcal{D} \, : \, J\subset B(c(I),16 D^{s(I)})\\ \begin{bgroup} s(I) \ge s(J) \end{bgroup}}} D^{(s(J)-s(I))/a}. \end{align}

By Lemma 7.2.4, there are at most \(2^{9a}\) cubes \(I\) at each scale with \(J \subset B(c(I), D^{s(I)})\). By convexity of \(t \mapsto D^t\) and since \(D \ge 2\), we have for all \(-1 \le t \le 0\)

\[ D^t \le 1 + t\left(1 - \frac{1}{D}\right) \le 1 + \frac{1}{2}t\, , \]

so \((1 - D^{-1/a})^{-1} \le 2a \le 2^{a-1}\). Using this estimate for the sum of the geometric series, we conclude that 7.2.12 is at most

\[ 2^{10a-1} \sum _{J\in \mathcal{J}({\mathfrak T}({\mathfrak u}))}\int _J|f(y)| M_{\mathcal{B},1}|g|(y) \, \mathrm{d}\mu (y)\, . \]

The collection \(\mathcal{J}\) is a partition of \(X\), so this equals

\[ 2^{11a-1} \int _X|f(y)| M_{\mathcal{B},1}|g|(y) \, \mathrm{d}\mu (y)\, . \]

Using Cauchy-Schwarz and Proposition 2.0.6, we conclude

\[ \left|\int \bar g S_{1,{\mathfrak u}}f \, \mathrm{d}\mu \right| \le 2^{12a} \| g\| _2\| f\| _2\, . \]

The lemma now follows by choosing \(g = S_{1,{\mathfrak u}}f\) and dividing on both sides by the finite \(\| S_{1,{\mathfrak u}}f\| _2\).

7.3 The quantitative \(L^2\) tree estimate

The main result of this subsection is the following quantitative bound for operators associated to trees, with decay in the densities \(\operatorname{\operatorname {dens}}_1\) and \(\operatorname{\operatorname {dens}}_2\).

Let \({\mathfrak u}\in {\mathfrak U}\). Then for all \(f,g\) bounded with bounded support

\begin{equation} \label{eq-cor-tree-est} \left|\int _X \bar g \sum _{{\mathfrak p}\in {\mathfrak T}({\mathfrak u})} T_{{\mathfrak p}}f \, \mathrm{d}\mu \right| \le 2^{155a^3} \operatorname{\operatorname {dens}}_1({\mathfrak T}({\mathfrak u}))^{1/2} \| f\| _2\| g\| _2\, . \end{equation}
7.3.1

If \(|f| \le \mathbf{1}_F\), then we have

\begin{equation} \label{eq-cor-tree-est-F} \left| \int _X \bar g \sum _{{\mathfrak p}\in {\mathfrak T}({\mathfrak u})} T_{{\mathfrak p}}f\, \mathrm{d}\mu \right| \le 2^{256a^3} \operatorname{\operatorname {dens}}_1({\mathfrak T}({\mathfrak u}))^{1/2} \operatorname{\operatorname {dens}}_2({\mathfrak T}({\mathfrak u}))^{1/2} \| f\| _2\| g\| _2\, . \end{equation}
7.3.2

Below, we deduce this lemma from Lemma 7.2.1 and the following two estimates controlling the size of support of the operator and its adjoint.

Lemma 7.3.2 local dens1 tree bound

Let \({\mathfrak u}\in {\mathfrak U}\) and \(L \in \mathcal{L}({\mathfrak T}({\mathfrak u}))\). Then

\begin{equation} \label{eq-1density-estimate-tree} \mu (L \cap \bigcup _{{\mathfrak p}\in {\mathfrak T}({\mathfrak u})} E({\mathfrak p})) \le 2^{101a^3} \operatorname{\operatorname {dens}}_1({\mathfrak T}({\mathfrak u})) \mu (L)\, . \end{equation}
7.3.3

Lemma 7.3.3 local dens2 tree bound

Let \(J \in \mathcal{J}({\mathfrak T}({\mathfrak u}))\) be such that there exist \({\mathfrak q}\in {\mathfrak T}({\mathfrak u})\) with \(J \cap {\mathcal{I}}({\mathfrak q}) \ne \emptyset \). Then

\[ \mu (F \cap J) \le 2^{200a^3 + 19} \operatorname{\operatorname {dens}}_2({\mathfrak T}({\mathfrak u})) \mu (J)\, . \]
Proof of Lemma 7.3.1

Denote

\[ \mathcal{E}({\mathfrak u}) = \bigcup _{{\mathfrak p}\in {\mathfrak T}({\mathfrak u})} E({\mathfrak p})\, . \]

Then we have

\[ \left| \int _X \bar g \sum _{{\mathfrak p}\in {\mathfrak T}({\mathfrak u})} T_{{\mathfrak p}} f \, \mathrm{d}\mu \right| = \left| \int _X \overline{ g\mathbf{1}_{\mathcal{E}({\mathfrak u})}} \sum _{{\mathfrak p}\in {\mathfrak T}({\mathfrak u})} T_{{\mathfrak p}} f \, \mathrm{d}\mu \right|\, . \]

By Lemma 7.2.1, this is bounded by

\begin{equation} \label{eq-both-factors-tree} \le 2^{104a^3}\| P_{\mathcal{J}({\mathfrak T}({\mathfrak u}))}|f|\| _2 \| P_{\mathcal{L}({\mathfrak T}({\mathfrak u}))} |\mathbf{1}_{\mathcal{E}({\mathfrak u})}g|\| _2\, . \end{equation}
7.3.4

We bound the two factors separately. We have

\[ \| P_{\mathcal{L}({\mathfrak T}({\mathfrak u}))} |\mathbf{1}_{\mathcal{E}({\mathfrak u})}g|\| _2 = \left( \sum _{L \in \mathcal{L}({\mathfrak T}({\mathfrak u}))} \frac{1}{\mu (L)} \left(\int _{L \cap \mathcal{E}({\mathfrak u})} |g(y)| \, \mathrm{d}\mu (y)\right)^2 \right)^{1/2}\, . \]

By Cauchy-Schwarz and Lemma 7.3.2 this is at most

\[ \le \left( \sum _{L \in \mathcal{L}({\mathfrak T}({\mathfrak u}))} 2^{101a^3} \operatorname{\operatorname {dens}}_1({\mathfrak T}({\mathfrak u})) \int _{L \cap \mathcal{E}({\mathfrak u})} |g(y)|^2 \, \mathrm{d}\mu (y) \right)^{1/2}\, . \]

Since cubes \(L \in \mathcal{L}({\mathfrak T}({\mathfrak u}))\) are pairwise disjoint by Lemma 7.1.2, this is

\begin{equation} \label{eq-factor-L-tree} \le 2^{51 a^3} \operatorname{\operatorname {dens}}_1({\mathfrak T}({\mathfrak u}))^{1/2} \| g\| _2\, . \end{equation}
7.3.5

Similarly, we have

\begin{equation} \label{eq-cor-tree-proof} \| P_{\mathcal{J}({\mathfrak T}({\mathfrak u}))}|f|\| _2 = \left( \sum _{J \in \mathcal{J}({\mathfrak T}({\mathfrak u}))} \frac{1}{\mu (J)} \left(\int _J |f(y)| \, \mathrm{d}\mu (y)\right)^2 \right)^{1/2}\, . \end{equation}
7.3.6

By Cauchy-Schwarz, this is

\[ \le \left( \sum _{J \in \mathcal{J}({\mathfrak T}({\mathfrak u}))} \int _J |f(y)|^2 \, \mathrm{d}\mu (y) \right)^{1/2}\, . \]

Since cubes in \(\mathcal{J}({\mathfrak T}({\mathfrak u}))\) are pairwise disjoint by Lemma 7.1.2, this at most

\begin{equation} \label{eq-factor-J-tree} \| f\| _2\, . \end{equation}
7.3.7

Combining 7.3.4, 7.3.5 and 7.3.7 and using \(a \ge 4\) gives 7.3.1.

If \(f \le \mathbf{1}_F\) then \(f = f\mathbf{1}_F\), so

\[ \left( \sum _{J \in \mathcal{J}({\mathfrak T}({\mathfrak u}))} \int _J |f(y)|^2 \, \mathrm{d}\mu (y) \right)^{1/2} = \left( \sum _{J \in \mathcal{J}({\mathfrak T}({\mathfrak u}))} \int _{J \cap F} |f(y)|^2 \, \mathrm{d}\mu (y) \right)^{1/2}\, . \]

We estimate as before, using now Lemma 7.3.3 and Cauchy-Schwarz, and obtain that this is

\[ \le 2^{100a^3 + 10} \operatorname{\operatorname {dens}}_2({\mathfrak T}({\mathfrak u}))^{1/2} \| f\| _2\, . \]

Combining this with 7.3.4, 7.3.6 and \(a \ge 4\) gives 7.3.2.

Now we prove the two auxiliary estimates.

Proof of Lemma 7.3.2

If the set on the right hand side is empty, then 7.3.3 holds. If not, then there exists \({\mathfrak p}\in {\mathfrak T}({\mathfrak u})\) with \(L \cap {\mathcal{I}}({\mathfrak p}) \ne \emptyset \).

Suppose first that there exists such \({\mathfrak p}\) with \({\mathrm{s}}({\mathfrak p}) \le s(L)\). Then by 2.0.8 \({\mathcal{I}}({\mathfrak p}) \subset L\), which gives by the definition of \(\mathcal{L}({\mathfrak T}({\mathfrak u}))\) that \(s(L) = -S\) and hence \(L = {\mathcal{I}}({\mathfrak p})\). Let \({\mathfrak q}\in {\mathfrak T}({\mathfrak u})\) with \(E({\mathfrak q}) \cap L \ne \emptyset \). Since \(s(L) = -S \le {\mathrm{s}}({\mathfrak q})\) it follows from 2.0.8 that \({\mathcal{I}}({\mathfrak p}) = L \subset {\mathcal{I}}({\mathfrak q})\). We have then by Lemma 2.1.2

\begin{align*} d_{{\mathfrak p}}({\mathcal{Q}}({\mathfrak p}), {\mathcal{Q}}({\mathfrak q})) & \le d_{{\mathfrak p}}({\mathcal{Q}}({\mathfrak p}), {\mathcal{Q}}({\mathfrak u})) + d_{{\mathfrak p}}({\mathcal{Q}}({\mathfrak q}), {\mathcal{Q}}({\mathfrak u}))\\ & \le d_{{\mathfrak p}}({\mathcal{Q}}({\mathfrak p}), {\mathcal{Q}}({\mathfrak u})) + d_{{\mathfrak q}}({\mathcal{Q}}({\mathfrak q}), {\mathcal{Q}}({\mathfrak u}))\, . \end{align*}

Using that \({\mathfrak p}, {\mathfrak q}\in {\mathfrak T}({\mathfrak u})\) and 2.0.32, this is at most \(8\). Using again the triangle inequality and Lemma 2.1.2, we obtain that for each \(q \in B_{{\mathfrak q}}({\mathcal{Q}}({\mathfrak q}), 1)\)

\[ d_{{\mathfrak p}}({\mathcal{Q}}({\mathfrak p}), q) \le d_{{\mathfrak p}}({\mathcal{Q}}({\mathfrak p}), {\mathcal{Q}}({\mathfrak q})) + d_{{\mathfrak q}}({\mathcal{Q}}({\mathfrak q}), q) \le 9\, . \]

Thus \(L \cap E({\mathfrak q}) \subset E_2(9, {\mathfrak p})\). We obtain

\[ \mu (L \cap \bigcup _{{\mathfrak q}\in {\mathfrak T}({\mathfrak u})} E({\mathfrak q})) \le \mu (E_2(9, {\mathfrak p}))\, . \]

By the definition of \(\operatorname{\operatorname {dens}}_1\), this is bounded by

\[ 9^a \operatorname{\operatorname {dens}}_1({\mathfrak T}({\mathfrak u})) \mu ({\mathcal{I}}({\mathfrak p})) =9^a \operatorname{\operatorname {dens}}_1({\mathfrak T}({\mathfrak u})) \mu (L)\, . \]

Since \(a \ge 4\), 7.3.3 follows in this case.

Now suppose that for each \({\mathfrak p}\in {\mathfrak T}({\mathfrak u})\) with \(L \cap E({\mathfrak p}) \ne \emptyset \), we have \({\mathrm{s}}({\mathfrak p}) {\gt} s(L)\). Since there exists at least one such \({\mathfrak p}\), there exists in particular at least one cube \(L'' \in \mathcal{D}\) with \(L \subset L''\) and \(s(L'') {\gt} s(L)\). By 2.0.7, there exists \(L' \in \mathcal{D}\) with \(L \subset L'\) and \(s(L') = s(L) + 1\). By the definition of \(\mathcal{L}({\mathfrak T}({\mathfrak u}))\) there exists a tile \({\mathfrak p}'' \in {\mathfrak T}({\mathfrak u})\) with \({\mathcal{I}}({\mathfrak p}'') \subset L'\). Let \({\mathfrak p}'\) be the unique tile such that \({\mathcal{I}}({\mathfrak p}') = L'\) and such that \(\Omega ({\mathfrak u}) \cap \Omega ({\mathfrak p}') \ne \emptyset \). Since by 2.0.32 \({\mathrm{s}}({\mathfrak p}') = s(L') \le {\mathrm{s}}({\mathfrak p}) {\lt} {\mathrm{s}}({\mathfrak u})\), we have by 2.0.8 and 2.0.14 that \(\Omega ({\mathfrak u}) \subset \Omega ({\mathfrak p}')\). Let \({\mathfrak q}\in {\mathfrak T}({\mathfrak u})\) with \(L \cap E({\mathfrak q}) \ne \emptyset \). As shown above, this implies \({\mathrm{s}}({\mathfrak q}) \ge s(L')\), so by 2.0.8 \(L' \subset {\mathcal{I}}({\mathfrak q})\). If \(q \in B_{{\mathfrak q}}({\mathcal{Q}}({\mathfrak q}), 1)\), then by a similar calculation as above, using the triangle inequality, Lemma 2.1.2 and 2.0.32, we obtain

\[ d_{{\mathfrak p}'}({\mathcal{Q}}({\mathfrak p}'), q) \le d_{{\mathfrak p}'}({\mathcal{Q}}({\mathfrak p}'), {\mathcal{Q}}({\mathfrak q})) + d_{{\mathfrak q}}({\mathcal{Q}}({\mathfrak q}), q) \le 6\, . \]

Thus \(L \cap E({\mathfrak q}) \subset E_2(6, {\mathfrak p}')\). Since \({\mathcal{I}}({\mathfrak p}'') \subset {\mathcal{I}}({\mathfrak p}') \subset {\mathcal{I}}({\mathfrak p})\) and \({\mathfrak p}'', {\mathfrak p}\in {\mathfrak T}({\mathfrak u})\), we have \({\mathfrak p}' \in {\mathfrak P}({\mathfrak T}({\mathfrak u}))\). We deduce using the definition 2.0.28 of \(\operatorname{\operatorname {dens}}_1\)

\[ \mu (L \cap \bigcup _{{\mathfrak q}\in {\mathfrak T}({\mathfrak u})} E({\mathfrak q})) \le \mu (E_2(6, {\mathfrak q}')) \le 6^a \operatorname{\operatorname {dens}}_1({\mathfrak T}({\mathfrak u})) \mu (L')\, . \]

Using the doubling property 1.0.5, 2.0.10, and \(a \ge 4\) this is estimated by

\[ 6^a 2^{100a^3 + 5}\operatorname{\operatorname {dens}}_1({\mathfrak T}({\mathfrak u})) \mu (L) \le 2^{101 a^3} \operatorname{\operatorname {dens}}_1({\mathfrak T}({\mathfrak u}))\mu (L)\, . \]

This completes the proof.

Proof of Lemma 7.3.3

Suppose first that there exists a tile \({\mathfrak p}\in {\mathfrak T}({\mathfrak u})\) with \({\mathcal{I}}({\mathfrak p}) \subset B(c(J), 100 D^{s(J) + 1})\). By the definition of \(\mathcal{J}({\mathfrak T}({\mathfrak u}))\), this implies that \(s(J) = -S\), and in particular \({\mathrm{s}}({\mathfrak p}) \ge s(J)\). Using the triangle inequality and 2.0.10 it follows that \(J \subset B({\mathrm{c}}({\mathfrak p}), 200 D^{{\mathrm{s}}({\mathfrak p}) + 1})\). From the doubling property 1.0.5, \(D=2^{100a^2}\) and 2.0.10, we obtain

\[ \mu ({\mathcal{I}}({\mathfrak p})) \le 2^{100a^3 + 9} \mu (J) \]

and hence

\[ \mu ( B({\mathrm{c}}({\mathfrak p}), 200 D^{{\mathrm{s}}({\mathfrak p}) + 1})) \le 2^{200a^3 +19} \mu (J)\, . \]

With the definition 2.0.29 of \(\operatorname{\operatorname {dens}}_2\) it follows that

\[ \mu (J \cap F) \le \mu ( B({\mathrm{c}}({\mathfrak p}), 200 D^{{\mathrm{s}}({\mathfrak p}) + 1}) \cap F) \]
\[ \le \operatorname{\operatorname {dens}}_2({\mathfrak T}({\mathfrak u})) \mu ( B({\mathrm{c}}({\mathfrak p}), 200 D^{{\mathrm{s}}({\mathfrak p}) + 1})) \le 2^{200a^3 +19} \operatorname{\operatorname {dens}}_2({\mathfrak T}({\mathfrak u}))\mu (J)\, , \]

completing the proof in this case.

Now suppose that there does not exist a tile \({\mathfrak p}\in {\mathfrak T}({\mathfrak u})\) with \({\mathcal{I}}({\mathfrak p}) \subset B(c(J), 100 D^{s(J) + 1})\). If we had \({\mathrm{s}}({\mathfrak q}) \le s(J)\), then by 2.0.8 and 2.0.10 \({\mathcal{I}}({\mathfrak q}) \subset J \subset B(c(J), 100 D^{s(J) + 1})\), contradicting our assumption. Thus \({\mathrm{s}}({\mathfrak q}) {\gt} s(J)\). Then, by 2.0.7 and 2.0.8, there exists some cube \(J' \in \mathcal{D}\) with \(s(J') = s(J) + 1\) and \(J \subset J'\). By definition of \(\mathcal{J}({\mathfrak T}({\mathfrak u}))\) there exists some \({\mathfrak p}\in {\mathfrak T}({\mathfrak u})\) such that \({\mathcal{I}}({\mathfrak p}) \subset B(c(J'), 100 D^{s(J') + 1})\). From the doubling property 1.0.5, \(D=2^{100a^2}\) and 2.0.10, we obtain

\begin{equation} \label{eq-measure-comparison-1} \mu (B({\mathrm{c}}({\mathfrak p}), 4D^{{\mathrm{s}}({\mathfrak p})})) \le 2^{4a} \mu ({\mathcal{I}}({\mathfrak p})) \le 2^{200a^3 + 14} \mu (J)\, . \end{equation}
7.3.8

If \(J \subset B({\mathrm{c}}({\mathfrak p}), 4 D^{{\mathrm{s}}({\mathfrak p})})\), then we bound

\[ \mu (J \cap F) \le \mu (B({\mathrm{c}}({\mathfrak p}), 4D^{{\mathrm{s}}({\mathfrak p})}) \cap F) \]

and use the definition 2.0.29

\[ \le \operatorname{\operatorname {dens}}_2({\mathfrak T}({\mathfrak u})) \mu (B({\mathrm{c}}({\mathfrak p}), 4D^{{\mathrm{s}}({\mathfrak p})})) \le 2^{200a^3 + 14} \mu (J)\, . \]

From now on we assume \(J \not\subset B({\mathrm{c}}({\mathfrak p}), 4 D^{{\mathrm{s}}({\mathfrak p})})\). Since

\begin{equation*} {\mathrm{c}}({\mathfrak p}) \in {\mathcal{I}}({\mathfrak p}) \subset B(c(J’), 100 D^{s(J') + 1})\, , \end{equation*}

we have by 2.0.10 and the triangle inequality

\[ J \subset J' \subset B(c(J'), 4D^{s(J')}) \subset B({\mathrm{c}}({\mathfrak p}), 104 D^{s(J') + 1})\, . \]

In particular this implies \(104 D^{s(J') + 1} {\gt} 4D^{{\mathrm{s}}({\mathfrak p})}\). By the triangle inequality we also have

\[ B({\mathrm{c}}({\mathfrak p}), 104 D^{s(J') + 1}) \subset B(c(J), 204 D^{s(J') + 1})\, , \]

so from the doubling property 1.0.5

\[ \mu ( B({\mathrm{c}}({\mathfrak p}), 104 D^{s(J') + 1})) \le 2^{200a^3 + 10} \mu (J)\, . \]

From here one completes the proof as in the other cases.

7.4 Almost orthogonality of separated trees

The main result of this subsection is the almost orthogonality estimate for operators associated to distinct trees in a forest in Lemma 7.4.4 below. We will deduce it from Lemmas 7.4.5 and 7.4.6, which are proven in Subsections 7.5 and 7.6, respectively. Before stating it, we introduce some relevant notation.

The adjoint of the operator \(T_{{\mathfrak p}}\) defined in 2.0.21 is given by

\begin{equation} \label{definetp*} T_{{\mathfrak p}}^* g(x) = \int _{E({\mathfrak p})} \overline{K_{{\mathrm{s}}({\mathfrak p})}(y,x)} e(-{Q}(y)(x)+ {Q}(y)(y)) g(y) \, \mathrm{d}\mu (y)\, . \end{equation}
7.4.1

Lemma 7.4.1 adjoint tile support

For each \({\mathfrak p}\in {\mathfrak P}\), we have

\[ T_{{\mathfrak p}}^* g = \mathbf{1}_{B({\mathrm{c}}({\mathfrak p}), 5D^{{\mathrm{s}}({\mathfrak p})})} T_{{\mathfrak p}}^* \mathbf{1}_{{\mathcal{I}}({\mathfrak p})} g\, . \]

For each \({\mathfrak u}\in {\mathfrak U}\) and each \({\mathfrak p}\in {\mathfrak T}({\mathfrak u})\), we have

\[ T_{{\mathfrak p}}^* g = \mathbf{1}_{{\mathcal{I}}({\mathfrak u})} T_{{\mathfrak p}}^* \mathbf{1}_{{\mathcal{I}}({\mathfrak u})} g\, . \]
Proof

By 2.0.32, \(E({\mathfrak p}) \subset {\mathcal{I}}({\mathfrak p}) \subset {\mathcal{I}}({\mathfrak u})\). Thus by 7.4.1

\[ T_{{\mathfrak p}}^* g(x) = T_{{\mathfrak p}}^* (\mathbf{1}_{{\mathcal{I}}({\mathfrak p})} g)(x) \]
\[ = \int _{E({\mathfrak p})} \overline{K_{{\mathrm{s}}({\mathfrak p})}(y,x)} e(-{Q}(y)(x) + {Q}(y)(y)) \mathbf{1}_{{\mathcal{I}}({\mathfrak p})}(y) g(y) \, \mathrm{d}\mu (y)\, . \]

If this integral is not \(0\), then there exists \(y \in {\mathcal{I}}({\mathfrak p})\) such that \(K_{{\mathrm{s}}({\mathfrak p})}(y,x) \ne 0\). By 2.1.2, 2.0.10 and the triangle inequality, it follows that

\begin{equation*} x \in B({\mathrm{c}}({\mathfrak p}), 5 D^{{\mathrm{s}}({\mathfrak p})})\, . \end{equation*}

Thus

\[ T_{{\mathfrak p}}^* g(x) = \mathbf{1}_{B({\mathrm{c}}({\mathfrak p}), 5D^{{\mathrm{s}}({\mathfrak p})})}(x) T_{{\mathfrak p}}^* (\mathbf{1}_{{\mathcal{I}}({\mathfrak p})} g)(x)\, . \]

The second claimed equation follows now since \({\mathcal{I}}({\mathfrak p}) \subset {\mathcal{I}}({\mathfrak u})\) and by 2.0.37 \(B({\mathrm{c}}({\mathfrak p}), 5D^{{\mathrm{s}}({\mathfrak p})}) \subset {\mathcal{I}}({\mathfrak u})\).

Lemma 7.4.2 adjoint tree estimate

For all bounded \(g\) with bounded support, we have that

\[ \left\| \sum _{{\mathfrak p}\in {\mathfrak T}({\mathfrak u})} T_{{\mathfrak p}}^* g\right\| _2 \le 2^{155a^3} \operatorname{\operatorname {dens}}_1({\mathfrak T}({\mathfrak u}))^{1/2} \| g\| _2\, . \]
Proof

By Lemma 7.3.1, we have for all bounded \(f,g\) with bounded support that

\[ \left| \int _X \overline{\sum _{{\mathfrak p}\in {\mathfrak T}({\mathfrak u})} T_{{\mathfrak p}}^* g} f \, \mathrm{d}\mu \right| = \left| \int _X \overline{g} \sum _{{\mathfrak p}\in {\mathfrak T}({\mathfrak u})} T_{{\mathfrak p}} f \, \mathrm{d}\mu \right| \]

\begin{equation} \label{eq-adjoint-bound} \le 2^{155a^3} \operatorname{\operatorname {dens}}_1({\mathfrak T}({\mathfrak u}))^{1/2} \| g\| _2 \| f\| _2\, . \end{equation}
7.4.2

Let \(f = \sum _{{\mathfrak p}\in {\mathfrak T}({\mathfrak u})} T_{{\mathfrak p}}^* g\). If \(g\) is bounded and has bounded support, then the same is true for \(f\). In particular \(\| f\| _2 {\lt} \infty \). Dividing 7.4.2 by \(\| f\| _2\) completes the proof.

We define

\[ S_{2,{\mathfrak u}}g := \left|\sum _{{\mathfrak p}\in {\mathfrak T}({\mathfrak u})} T_{{\mathfrak p}}^*g \right| + M_{\mathcal{B},1}g + |g|\, . \]
Lemma 7.4.3 adjoint tree control

We have for all \({\mathfrak u}\in {\mathfrak U}\) and bounded \(g\) with bounded support

\[ \| S_{2, {\mathfrak u}} g\| _2 \le 2^{156a^3} \| g\| _2\, . \]
Proof

This follows immediately from Minkowski’s inequality, Proposition 2.0.6 and Lemma 7.4.2, using that \(a \ge 4\).

Now we are ready to state the main result of this subsection.

Lemma 7.4.4 correlation separated trees

For any \({\mathfrak u}_1 \ne {\mathfrak u}_2 \in {\mathfrak U}\) and all bounded \(g_1, g_2\) with bounded support, we have

\begin{equation} \label{eq-lhs-sep-tree} \left| \int _X \sum _{{\mathfrak p}_1 \in {\mathfrak T}({\mathfrak u}_1)} \sum _{{\mathfrak p}_2 \in {\mathfrak T}({\mathfrak u}_2)} T^*_{{\mathfrak p}_1}g_1 \overline{T^*_{{\mathfrak p}_2}g_2 }\, \mathrm{d}\mu \right| \end{equation}
7.4.3

\begin{equation} \label{eq-rhs-sep-tree} \le 2^{550a^3-3n} \prod _{j =1}^2 \| S_{2, {\mathfrak u}_j} g_j\| _{L^2({\mathcal{I}}({\mathfrak u}_1) \cap {\mathcal{I}}({\mathfrak u}_2))}\, . \end{equation}
7.4.4

Proof of Lemma 7.4.4

By Lemma 7.4.1 and 2.0.8, the left hand side 7.4.3 is \(0\) unless \({\mathcal{I}}({\mathfrak u}_1) \subset {\mathcal{I}}({\mathfrak u}_2)\) or \({\mathcal{I}}({\mathfrak u}_2) \subset {\mathcal{I}}({\mathfrak u}_1)\). Without loss of generality we assume that \({\mathcal{I}}({\mathfrak u}_1) \subset {\mathcal{I}}({\mathfrak u}_2)\).

Define

\begin{equation} \label{def-Tree-S-set} \mathfrak {S} := \{ {\mathfrak p}\in {\mathfrak T}({\mathfrak u}_1) \cup {\mathfrak T}({\mathfrak u}_2) \ : \ d_{{\mathfrak p}}({\mathcal{Q}}({\mathfrak u}_1), {\mathcal{Q}}({\mathfrak u}_2)) \ge 2^{Zn/2}\, \} . \end{equation}
7.4.5

Lemma 7.4.4 follows by combining the definition 2.0.3 of \(Z\) with the following two lemmas.

Lemma 7.4.5 correlation distant tree parts

We have for all \({\mathfrak u}_1 \ne {\mathfrak u}_2 \in {\mathfrak U}\) with \({\mathcal{I}}({\mathfrak u}_1) \subset {\mathcal{I}}({\mathfrak u}_2)\) and all bounded \(g_1, g_2\) with bounded support

\begin{equation} \label{eq-lhs-big-sep-tree} \left| \int _X \sum _{{\mathfrak p}_1 \in {\mathfrak T}({\mathfrak u}_1)} \sum _{{\mathfrak p}_2 \in {\mathfrak T}({\mathfrak u}_2) \cap \mathfrak {S}} T^*_{{\mathfrak p}_1}g_1 \overline{T^*_{{\mathfrak p}_2}g_2 }\, \mathrm{d}\mu \right| \end{equation}
7.4.6

\begin{equation} \label{eq-rhs-big-sep-tree} \le 2^{541a^3} 2^{-Zn/(4a^2 + 2a^3)} \prod _{j =1}^2 \| S_{2, {\mathfrak u}_j} g_j\| _{L^2({\mathcal{I}}({\mathfrak u}_1))}\, . \end{equation}
7.4.7

Lemma 7.4.6 correlation near tree parts

We have for all \({\mathfrak u}_1 \ne {\mathfrak u}_2 \in {\mathfrak U}\) with \({\mathcal{I}}({\mathfrak u}_1) \subset {\mathcal{I}}({\mathfrak u}_2)\) and all bounded \(g_1, g_2\) with bounded support

\begin{equation} \label{eq-lhs-small-sep-tree} \left| \int _X \sum _{{\mathfrak p}_1 \in {\mathfrak T}({\mathfrak u}_1)} \sum _{{\mathfrak p}_2 \in {\mathfrak T}({\mathfrak u}_2) \setminus \mathfrak {S}} T^*_{{\mathfrak p}_1}g_1 \overline{T^*_{{\mathfrak p}_2}g_2 }\, \mathrm{d}\mu \right| \end{equation}
7.4.8

\begin{equation} \label{eq-rhs-small-sep-tree} \le 2^{222a^3} 2^{-Zn 2^{-10a}} \prod _{j =1}^2 \| S_{2, {\mathfrak u}_j} g_j\| _{L^2({\mathcal{I}}({\mathfrak u}_1))}\, . \end{equation}
7.4.9

In the proofs of both lemmas, we will need the following observation.

Lemma 7.4.7 overlap implies distance

Let \({\mathfrak u}_1 \ne {\mathfrak u}_2 \in {\mathfrak U}\) with \({\mathcal{I}}({\mathfrak u}_1) \subset {\mathcal{I}}({\mathfrak u}_2)\). If \({\mathfrak p}\in {\mathfrak T}({\mathfrak u}_1) \cup {\mathfrak T}({\mathfrak u}_2)\) with \({\mathcal{I}}({\mathfrak p}) \cap {\mathcal{I}}({\mathfrak u}_1) \ne \emptyset \), then \({\mathfrak p}\in \mathfrak {S}\). In particular, we have \({\mathfrak T}({\mathfrak u}_1) \subset \mathfrak {S}\).

Proof

Suppose first that \({\mathfrak p}\in {\mathfrak T}({\mathfrak u}_1)\). Then \({\mathcal{I}}({\mathfrak p}) \subset {\mathcal{I}}({\mathfrak u}_1) \subset {\mathcal{I}}({\mathfrak u}_2)\), by 2.0.32. Thus we have by the separation condition 2.0.36, 2.0.15, 2.0.32 and the triangle inequality

\begin{align*} d_{{\mathfrak p}}({\mathcal{Q}}({\mathfrak u}_1), {\mathcal{Q}}({\mathfrak u}_2)) & \ge d_{{\mathfrak p}}({\mathcal{Q}}({\mathfrak p}), {\mathcal{Q}}({\mathfrak u}_2)) - d_{{\mathfrak p}}({\mathcal{Q}}({\mathfrak p}), {\mathcal{Q}}({\mathfrak u}_1))\\ & \ge 2^{Z(n+1)} - 4\\ & \ge 2^{Zn/2}\, , \end{align*}

using that \(Z= 2^{12a}\ge 4\). Hence \({\mathfrak p}\in \mathfrak {S}\).

Suppose now that \({\mathfrak p}\in {\mathfrak T}({\mathfrak u}_2)\). If \({\mathcal{I}}({\mathfrak p}) \subset {\mathcal{I}}({\mathfrak u}_1)\), then the same argument as above with \({\mathfrak u}_1\) and \({\mathfrak u}_2\) swapped shows \({\mathfrak p}\in \mathfrak {S}\). If \({\mathcal{I}}({\mathfrak p}) \not\subset {\mathcal{I}}({\mathfrak u}_1)\) then, by 2.0.8, \({\mathcal{I}}({\mathfrak u}_1) \subset {\mathcal{I}}({\mathfrak p})\). Pick \({\mathfrak p}' \in {\mathfrak T}({\mathfrak u}_1)\), we have \({\mathcal{I}}({\mathfrak p}') \subset {\mathcal{I}}({\mathfrak u}_1) \subset {\mathcal{I}}({\mathfrak p})\). Hence, by Lemma 2.1.2 and the first paragraph

\[ d_{{\mathfrak p}}({\mathcal{Q}}({\mathfrak u}_1), {\mathcal{Q}}({\mathfrak u}_2)) \ge d_{{\mathfrak p}'}({\mathcal{Q}}({\mathfrak u}_1), {\mathcal{Q}}({\mathfrak u}_2)) \ge 2^{Zn}\, , \]

so \({\mathfrak p}\in \mathfrak {S}\).

To simplify the notation, we will write at various places throughout the proof of Lemmas 7.4.5 and 7.4.6 for a subset \({\mathfrak C}\subset {\mathfrak P}\)

\[ T_{{\mathfrak C}} f := \sum _{{\mathfrak p}\in {\mathfrak C}} T_{{\mathfrak p}} f\, , \quad \quad T_{{\mathfrak C}}^* g := \sum _{{\mathfrak p}\in {\mathfrak C}} T_{{\mathfrak p}}^* g\, . \]

7.5 Proof of the Tiles with large separation Lemma

Lemma 7.4.5 follows from the van der Corput estimate in Proposition 2.0.5. We apply this proposition in Section 7.5.3. To prepare this application, we first, in Section 7.5.1, construct a suitable partition of unity, and show then, in Section 7.5.2 the Hölder estimates needed to apply Proposition 2.0.5.

7.5.1 A partition of unity

Define

\[ \mathcal{J}' = \{ J \in \mathcal{J}(\mathfrak {S}) \ : \ J \subset {\mathcal{I}}({\mathfrak u}_1)\} \, . \]
Lemma 7.5.1 dyadic partition 1

We have that

\[ {\mathcal{I}}({\mathfrak u}_1) = \dot{\bigcup _{J \in \mathcal{J}'}} J\, . \]
Proof

By Lemma 7.1.2, it remains only to show that each \(J \in \mathcal{J}(\mathfrak {S})\) with \(J \cap {\mathcal{I}}({\mathfrak u}_1) \ne \emptyset \) is in \(\mathcal{J}'\). But if \(J \notin \mathcal{J}'\), then by 2.0.8 \({\mathcal{I}}({\mathfrak u}_1) \subsetneq J\). Pick \({\mathfrak p}\in {\mathfrak T}({\mathfrak u}_1) \subset \mathfrak {S}\). Then \({\mathcal{I}}({\mathfrak p}) \subsetneq J\). This contradicts the definition of \(\mathcal{J}(\mathfrak {S})\).

For cubes \(J \in \mathcal{D}\), denote

\begin{equation} \label{def-BJ} B(J) := B(c(J), 8D^{s(J)}). \end{equation}
7.5.1

The main result of this subsubsection is the following.

There exists a family of functions \(\chi _J\), \(J \in \mathcal{J}'\) such that

\begin{equation} \label{eq-pao-1} \mathbf{1}_{{\mathcal{I}}({\mathfrak u}_1)} = \sum _{J \in \mathcal{J}'} \chi _J\, , \end{equation}
7.5.2

and for all \(J \in \mathcal{J}'\) and all \(y,y' \in {\mathcal{I}}({\mathfrak u}_1)\)

\begin{equation} \label{eq-pao-2} 0 \leq \chi _J(y) \leq \mathbf{1}_{B(J)}(y)\, , \end{equation}
7.5.3

\begin{equation} \label{eq-pao-3} |\chi _J(y) - \chi _J(y')| \le 2^{226a^3} \frac{\rho (y,y')}{D^{s(J)}}\, . \end{equation}
7.5.4

In the proof, we will use the following auxiliary lemma.

Lemma 7.5.3 moderate scale change

If \(J, J' \in \mathcal{J'}\) with

\[ B(J) \cap B(J') \ne \emptyset \, , \]

then \(|s(J) - s(J')| \le 1\).

Proof of Lemma 7.5.2

For each cube \(J \in \mathcal{J}\) let

\[ \tilde\chi _J(y) = \max \{ 0, 8 - D^{-s(J)} \rho (y, c(J))\} \, , \]

and set

\[ a(y) = \sum _{J \in \mathcal{J}'} \tilde\chi _J(y)\, . \]

We define

\[ \chi _J(y) := \frac{\tilde\chi _J(y)}{a(y)}\, . \]

Then, due to 2.0.37 and 7.5.1, the properties 7.5.2 and 7.5.3 are clearly true. Estimate 7.5.4 follows from 7.5.3 if \(y, y' \notin B(J)\). Thus we can assume that \(y \in B(J)\). We have by the triangle inequality

\[ |\chi _J(y) - \chi _J(y')| \le \frac{|\tilde\chi _J(y) - \tilde\chi _J(y')|}{a(y)} + \frac{\tilde\chi _J(y')|a(y) - a(y')|}{a(y)a(y')} \]

Since \(\tilde\chi _J(z) \ge 4\) for all \(z \in B(c(J), 4) \supset J\) and by Lemma 7.5.1, we have that \(a(z) \ge 4\) for all \(z \in {\mathcal{I}}({\mathfrak u}_1)\). So we can estimate the above further by

\[ \le 2^{-2}(|\tilde\chi _J(y) - \tilde\chi _J(y')| + \tilde\chi _J(y')|a(y) - a(y')|)\, . \]

If \(y' \notin B({\mathrm{c}}({\mathfrak p}), 8D^{{\mathrm{s}}({\mathfrak p})})\) then the second summand vanishes. Else, we can estimate the above, using also that \(|\tilde\chi _J(y')| \le 8\), by

\[ \le 2^{-2} |\tilde\chi _J(y) - \tilde\chi _J(y')| + 2 \sum _{\substack {J’ \in \mathcal{J}’\\ B(c(J’), 8D^{s(J')}) \cap B(c(J), 8D^{s(J)}) \ne \emptyset }}|\tilde\chi _{J'}(y) - \tilde\chi _{J'} (y')|\, . \]

By the triangle inequality, we have for all dyadic cubes \(I \in \mathcal{J}'\)

\[ |\tilde\chi _I(y) - \tilde\chi _I(y')| \le \rho (y, y') D^{-s(I)}\, . \]

Using this above, we obtain

\[ |\chi _J(y) - \chi _J(y')| \le \rho (y,y') \Big( \frac{1}{4} D^{-s(J)} + 2 \sum _{\substack {J’ \in \mathcal{J}’\\ B(J’) \cap B(J) \ne \emptyset }} D^{-s(J')}\Big)\, . \]

By Lemma 7.5.3, this is at most

\[ \frac{\rho (y,y')}{D^{s(J)}} \left( \frac{1}{4} + 2D |\{ J' \in \mathcal{J}' \ : \ B(J') \cap B(J) \ne \emptyset \} |\right)\, . \]

By 2.0.10 and Lemma 7.5.1, the balls \(B(c(J'), \frac{1}{4} D^{s(J')})\) are pairwise disjoint, so by Lemma 7.5.3 the balls \(B(c(J'), \frac{1}{4} D^{s(J) - 1})\) are also disjoint. By the triangle inequality and Lemma 7.5.3, each such ball for \(J'\) in the set of the last display is contained in

\[ B(c(J), 9 D^{s(J) + 1})\, . \]

By the doubling property 1.0.5, we further have

\[ \mu \Big(B(c(J'), \frac{1}{4}D^{s(J')})\Big) \ge 2^{-200a^3 - 6} \mu (B(c(J), 9 D^{s(J) + 1})) \]

for each such ball. Thus

\[ |\{ J' \in \mathcal{J}' \ : \ B(J') \cap B(J) \ne \emptyset \} | \le 2^{200a^3 + 6}\, . \]

Recalling that \(D=2^{100a^2}\), we obtain

\[ \frac{1}{4} + 2D |\{ J' \in \mathcal{J}' \ : \ B(J') \cap B(J) \ne \emptyset \} |\leq 2^{200a^3 + 100a^2+ 8}. \]

Since \(a\ge 4\), 7.5.4 follows.

Proof of Lemma 7.5.3

Suppose that \(s(J') {\lt} s(J) - 1\). Then \(s(J) {\gt} -S\). Thus, by the definition of \(\mathcal{J}'\) there exists no \({\mathfrak p}\in \mathfrak {S}\) with

\begin{equation} \label{eq-tile-incl-1} {\mathcal{I}}({\mathfrak p}) \subset B(c(J), 100D^{s(J) + 1})\, . \end{equation}
7.5.5

Since \(s(J') {\lt} s(J)\) and \(J', J \subset {\mathcal{I}}({\mathfrak u}_1)\), we have \(J' \subsetneq {\mathcal{I}}({\mathfrak u}_1)\). By 2.0.7, 2.0.8 there exists a cube \(J'' \in \mathcal{D}\) with \(J \subset J''\) and \(s(J'') = s(J') + 1\). By the definition of \(\mathcal{J}'\), there exists a tile \({\mathfrak p}\in \mathfrak {S}\) with

\begin{equation} \label{tile-incl-2} {\mathcal{I}}({\mathfrak p}) \subset B(c(J''), 100 D^{s(J')+2})\, . \end{equation}
7.5.6

But by the triangle inequality and 2.0.1, we have

\[ B(c(J''), 100 D^{s(J')+2}) \subset B(c(J), 100D^{s(J) + 1})\, , \]

which contradicts 7.5.5 and 7.5.6.

7.5.2 Hölder estimates for adjoint tree operators

Let \(g_1, g_2:X \to \mathbb {C}\) be bounded with bounded support. Define for \(J \in \mathcal{J}'\)

\begin{equation} \label{def-hj} h_J(y) := \chi _J(y)\cdot (e({\mathcal{Q}}({\mathfrak u}_1)(y)) T_{{\mathfrak T}({\mathfrak u}_1)}^* g_1(y)) \cdot \overline{(e({\mathcal{Q}}({\mathfrak u}_2)(y)) T_{{\mathfrak T}({\mathfrak u}_2) \cap \mathfrak {S}}^* g_2(y))}\, . \end{equation}
7.5.7

The main result of this subsubsection is the following \(\tau \)-Hölder estimate for \(h_J\), where \(\tau = 1/a\).

Lemma 7.5.4 Holder correlation tree

We have for all \(J \in \mathcal{J}'\) that

\begin{equation} \label{hHolder} \| h_J\| _{C^{\tau }(B(c(J), 8D^{s(J)}))} \le 2^{535a^3} \prod _{j = 1,2} (\inf _{B(c(J), \frac{1}{8}D^{s(J)})} |T_{{\mathfrak T}({\mathfrak u}_j)}^* g_j| + \inf _J M_{\mathcal{B}, 1} |g_j|)\, . \end{equation}
7.5.8

We will prove this lemma at the end of this section, after establishing several auxiliary results.

We begin with the following Hölder continuity estimate for adjoints of operators associated to tiles.

Lemma 7.5.5 Holder correlation tile

Let \({\mathfrak u}\in {\mathfrak U}\) and \({\mathfrak p}\in {\mathfrak T}({\mathfrak u})\). Then for all \(y, y' \in X\) and all bounded \(g\) with bounded support, we have

\[ |e({\mathcal{Q}}({\mathfrak u})(y)) T_{{\mathfrak p}}^* g(y) - e({\mathcal{Q}}({\mathfrak u})(y')) T_{{\mathfrak p}}^* g(y')| \]

\begin{equation} \label{T*Holder2} \le \frac{2^{151a^3}}{\mu (B({\mathrm{c}}({\mathfrak p}), 4D^{{\mathrm{s}}({\mathfrak p})}))} \left(\frac{\rho (y, y')}{D^{{\mathrm{s}}({\mathfrak p})}}\right)^{1/a} \int _{E({\mathfrak p})} |g(x)| \, \mathrm{d}\mu (x)\, . \end{equation}
7.5.9

Proof

By 7.4.1, we have

\[ |e({\mathcal{Q}}({\mathfrak u})(y)) T_{{\mathfrak p}}^* g(y) - e({\mathcal{Q}}({\mathfrak u})(y')) T_{{\mathfrak p}}^* g(y')| \]
\begin{multline*} =\bigg| \int _{E({\mathfrak p})} e({Q}(x)(x) - {Q}(x)(y) + {\mathcal{Q}}({\mathfrak u})(y)) \overline{K_{{\mathrm{s}}({\mathfrak p})}(x, y)} g(x) \\ - e({Q}(x)(x) - {Q}(x)(y’) + {\mathcal{Q}}({\mathfrak u})(y’)) \overline{K_{{\mathrm{s}}({\mathfrak p})}(x, y')} g(x) \, \mathrm{d}\mu (x)\bigg| \end{multline*}
\begin{multline*} \leq \int _{E({\mathfrak p})} |g(x)| |e({Q}(x)(y) - {Q}(x)(y’) - {\mathcal{Q}}({\mathfrak u})(y) + {\mathcal{Q}}({\mathfrak u})(y’))\overline{K_{{\mathrm{s}}({\mathfrak p})}(x, y)}\\ - \overline{K_{{\mathrm{s}}({\mathfrak p})}(x, y')}| \, \mathrm{d}\mu (x) \end{multline*}
\begin{multline} \leq \int _{E({\mathfrak p})} |g(x)| |e(-{Q}(x)(y) + {Q}(x)(y’) + {\mathcal{Q}}({\mathfrak u})(y) - {\mathcal{Q}}({\mathfrak u})(y’)) - 1| \\ \times |\overline{K_{{\mathrm{s}}({\mathfrak p})}(x, y)}|\, \mathrm{d}\mu (x) \label{T*Holder1b} \end{multline}

\begin{equation} + \int _{E({\mathfrak p})} |g(x)| |\overline{K_{{\mathrm{s}}({\mathfrak p})}(x, y)} - \overline{K_{{\mathrm{s}}({\mathfrak p})}(x, y')} |\, \mathrm{d}\mu (x)\, .\label{T*Holder1} \end{equation}
7.5.12

By the oscillation estimate 1.0.7, we have

\[ |-{Q}(x)(y) + {Q}(x)(y') + {\mathcal{Q}}({\mathfrak u})(y) - {\mathcal{Q}}({\mathfrak u})(y')| \]

\begin{equation} \label{eq-lem-tile-Holder-comp} \le d_{B(y, \rho (y,y'))}({Q}(x), {\mathcal{Q}}({\mathfrak u}))\, . \end{equation}
7.5.13

Suppose that \(y, y' \in B({\mathrm{c}}({\mathfrak p}), 5D^{{\mathrm{s}}({\mathfrak p})})\), so that \(\rho (y,y') \le 10D^{{\mathrm{s}}({\mathfrak p})}\). Let \(k \in \mathbb {Z}\) be such that \(2^{ak}\rho (y,y') \le 10D^{{\mathrm{s}}({\mathfrak p})}\) but \(2^{a(k+1)} \rho (y,y') {\gt} 10D^{{\mathrm{s}}({\mathfrak p})}\). In particular, \(k \ge 0\). Then, using 1.0.8, we can bound 7.5.13 from above by

\[ 2^{-k} d_{B({\mathrm{c}}({\mathfrak p}), 10 D^{{\mathrm{s}}({\mathfrak p})})}({Q}(x), {\mathcal{Q}}({\mathfrak u})) \le 2^{6a - k} d_{{\mathfrak p}}({Q}(x), {\mathcal{Q}}({\mathfrak u}))\, . \]

Since \(x \in E({\mathfrak p})\) we have \({Q}(x) \in \Omega ({\mathfrak p}) \subset B_{{\mathfrak p}}({\mathcal{Q}}({\mathfrak p}), 1)\), and since \({\mathfrak p}\in {\mathfrak T}({\mathfrak u})\) we have \({\mathcal{Q}}({\mathfrak u}) \in B_{{\mathfrak p}}({\mathcal{Q}}({\mathfrak p}), 4)\), so this is estimated by

\[ \le 5 \cdot 2^{6a - k}\, . \]

By definition of \(k\), we have

\[ k \le \frac{1}{a} \log _2\left(\frac{10 D^{{\mathrm{s}}({\mathfrak p})}}{\rho (y,y')}\right)\, , \]

which gives

\begin{equation} \label{eq-lem-Tile-holder-im1} |-{Q}(x)(y) + {Q}(x)(y') + {\mathcal{Q}}({\mathfrak u})(y) - {\mathcal{Q}}({\mathfrak u})(y')| \le 5 \cdot 2^{6a} \left(\frac{\rho (y,y')}{10 D^{{\mathrm{s}}({\mathfrak p})}}\right)^{1/a}\, . \end{equation}
7.5.14

For all \(x \in {\mathcal{I}}({\mathfrak p})\), we have by 1.0.5 that

\[ \mu (B(x, D^{{\mathrm{s}}({\mathfrak p})})) \ge 2^{-3a} \mu (B({\mathrm{c}}({\mathfrak p}), 4D^{{\mathrm{s}}({\mathfrak p})}))\, . \]

Combining the above with 2.1.3, 2.1.4 and 7.5.14, we obtain

\[ \eqref{T*Holder1b}+\eqref{T*Holder1} \le \frac{2^{3a}}{\mu (B({\mathrm{c}}({\mathfrak p}), 4D^{{\mathrm{s}}({\mathfrak p})}))} \int _{E({\mathfrak p})}|g(x)| \, \mathrm{d}\mu (x) \times \]
\[ (2^{102a^3} \cdot 5 \cdot 2^{6a} \left(\frac{\rho (y,y')}{ D^{{\mathrm{s}}({\mathfrak p})}}\right)^{1/a} + 2^{150a^3} \left(\frac{\rho (y,y')}{D^{{\mathrm{s}}({\mathfrak p})}}\right)^{1/a}) \]

Since \(\rho (y,y') \le 10 D^{{\mathrm{s}}({\mathfrak p})}\), we conclude

\[ \eqref{T*Holder1b}+\eqref{T*Holder1} \le \frac{2^{151a^3}}{\mu (B({\mathrm{c}}({\mathfrak p}), 4D^{{\mathrm{s}}({\mathfrak p})}))} \left(\frac{\rho (y,y')}{D^{{\mathrm{s}}({\mathfrak p})}}\right)^{1/a} \int _{E({\mathfrak p})}|g(x)| \, \mathrm{d}\mu (x)\, . \]

Next, if \(y,y' \notin B({\mathrm{c}}({\mathfrak p}), 5D^{{\mathrm{s}}({\mathfrak p})})\), then \(T_{{\mathfrak p}}^*g(y) = T_{{\mathfrak p}}^*g(y') = 0\), by Lemma 7.4.1. Then 7.5.9 holds.

Finally, if \(y \in B({\mathrm{c}}({\mathfrak p}), 5D^{{\mathrm{s}}({\mathfrak p})})\) and \(y' \notin B({\mathrm{c}}({\mathfrak p}), 5D^{{\mathrm{s}}({\mathfrak p})})\), then

\[ |e({\mathcal{Q}}({\mathfrak u})(y)) T_{{\mathfrak p}}^* g(y) - e({\mathcal{Q}}({\mathfrak u})(y')) T_{{\mathfrak p}}^* g(y')| = |T_{{\mathfrak p}}^* g(y)| \]
\[ \le \int _{E({\mathfrak p})} |K_{{\mathrm{s}}({\mathfrak p})}(x,y)| |g(x)| \, \mathrm{d}\mu (x)\, . \]

By the same argument used to prove 2.1.6, this is bounded by

\begin{equation} \label{eq-lem-Tile-holder-im2} \le 2^{102a^3} \int _{E({\mathfrak p})} \frac{1}{\mu (B(x, D^s))} \psi (D^{-s} \rho (x,y)) |g(x)| \, \mathrm{d}\mu (x)\, . \end{equation}
7.5.15

It follows from the definition of \(\psi \) that

\[ \psi (x) \le \max \{ 0, (2 - 4x)^{1/a}\} \, . \]

Now for all \(x\in E({\mathfrak p})\), it follows by the triangle inequality and 2.0.10 that

\begin{multline*} 2 - 4D^{-{\mathrm{s}}({\mathfrak p})}\rho (x,y)\leq 2 - 4D^{-{\mathrm{s}}({\mathfrak p})}\rho (y, {\mathrm{c}}({\mathfrak p})) + 4 D^{-{\mathrm{s}}({\mathfrak p})}\rho (x, {\mathrm{c}}({\mathfrak p}))\\ \leq 18 - 4 D^{-{\mathrm{s}}({\mathfrak p})} \rho (y, {\mathrm{c}}({\mathfrak p})) \leq 4 D^{-{\mathrm{s}}({\mathfrak p})}\rho (y,y’) - 2 . \end{multline*}

Combining the above with the previous estimate on \(\psi \), we get

\[ \psi (D^{-{\mathrm{s}}({\mathfrak p})}\rho (x,y)) \le 4 (D^{-{\mathrm{s}}({\mathfrak p})}\rho (y,y'))^{1/a}. \]

Further, we obtain from the doubling property 1.0.5 and 2.0.10 that

\[ \mu (B(x, D^s)) \ge 2^{-2a} \mu ({\mathrm{c}}({\mathfrak p}), 4D^s)\, . \]

Plugging this into 7.5.15 and using \(a \ge 4\), we get

\[ |T_{{\mathfrak p}}^* g(y)| \le \frac{2^{103a^3}}{\mu (B({\mathrm{c}}({\mathfrak p}), 4D^{{\mathrm{s}}({\mathfrak p})}))} \left(\frac{\rho (y,y')}{D^{{\mathrm{s}}({\mathfrak p})}}\right)^{1/a} \int _{E({\mathfrak p})} |g(x)| \, \mathrm{d}\mu (y)\, , \]

which completes the proof of the lemma.

Recall that

\begin{equation*} B(J) := B(c(J), 8D^{s(J)}). \end{equation*}

We also denote

\begin{equation*} B^\circ {}(J) := B(c(J), \frac{1}{8}D^{s(J)})\, . \end{equation*}
Lemma 7.5.6 limited scale impact

Let \({\mathfrak p}\in {\mathfrak T}({\mathfrak u}_2) \setminus \mathfrak {S}\), \(J \in \mathcal{J}'\) and suppose that

\[ B({\mathcal{I}}({\mathfrak p})) \cap B^\circ (J) \ne \emptyset \, . \]

Then

\[ s(J) \le {\mathrm{s}}({\mathfrak p}) \le s(J) +3\, . \]
Proof

For the first estimate, assume that \({\mathrm{s}}({\mathfrak p}) {\lt} s(J)\), then in particular \({\mathrm{s}}({\mathfrak p}) \le {\mathrm{s}}({\mathfrak u}_1)\). Since \({\mathfrak p}\notin \mathfrak {S}\), we have by Lemma 7.4.7 that \({\mathcal{I}}({\mathfrak p}) \cap {\mathcal{I}}({\mathfrak u}_1) = \emptyset \). Since \(B\Big(c(J), \frac{1}{4} D^{s(J)}\Big) \subset {\mathcal{I}}(J) \subset {\mathcal{I}}({\mathfrak u}_1)\), this implies

\[ \rho (c(J), {\mathrm{c}}({\mathfrak p})) \ge \frac{1}{4}D^{s(J)}\, . \]

On the other hand

\[ \rho (c(J), {\mathrm{c}}({\mathfrak p})) \le \frac{1}{8} D^{s(J)} + 8 D^{{\mathrm{s}}({\mathfrak p})}\, , \]

by our assumption. Thus \(D^{{\mathrm{s}}({\mathfrak p})} \ge 64 D^{s(J)}\), which contradicts 2.0.1 and \(a \ge 4\).

For the second estimate, assume that \({\mathrm{s}}({\mathfrak p}) {\gt} s(J) + 3\). Since \(J \in \mathcal{J}'\), we have \(J \subsetneq {\mathcal{I}}({\mathfrak u}_1)\). Thus there exists \(J' \in \mathcal{D}\) with \(J \subset J'\) and \(s(J') = s(J) + 1\), by 2.0.7 and 2.0.8. By definition of \(\mathcal{J}'\), there exists some \({\mathfrak p}' \in \mathfrak {S}\) such that \({\mathcal{I}}({\mathfrak p}') \subset B(c(J'), 100 D^{s(J) + 2})\). On the other hand, since \(B({\mathcal{I}}({\mathfrak p})) \cap B^\circ (J) \ne \emptyset \), by the triangle inequality it holds that

\[ B(c(J'), 100 D^{s(J) + 3}) \subset B({\mathrm{c}}({\mathfrak p}), 10 D^{{\mathrm{s}}({\mathfrak p})})\, . \]

Using the definition of \(\mathfrak {S}\), we have

\[ 2^{Zn/2} \le d_{{\mathfrak p}'}({\mathcal{Q}}({\mathfrak u}_1), {\mathcal{Q}}({\mathfrak u}_2)) \le d_{B(c(J'), 100 D^{s(J) + 2})}({\mathcal{Q}}({\mathfrak u}_1), {\mathcal{Q}}({\mathfrak u}_2))\, . \]

By 1.0.10, this is

\[ \le 2^{-100a} d_{B(c(J'), 100 D^{s(J) + 3})}({\mathcal{Q}}({\mathfrak u}_1), {\mathcal{Q}}({\mathfrak u}_2)) \]
\[ \le 2^{-100a} d_{B({\mathrm{c}}({\mathfrak p}), 10 D^{{\mathrm{s}}({\mathfrak p})})}({\mathcal{Q}}({\mathfrak u}_1), {\mathcal{Q}}({\mathfrak u}_2))\, , \]

and by 1.0.8 and the definition of \(\mathfrak {S}\)

\[ \le 2^{-94a} d_{{\mathfrak p}}({\mathcal{Q}}({\mathfrak u}_1), {\mathcal{Q}}({\mathfrak u}_2)) \le 2^{-94a} 2^{Zn/2}\, . \]

This is a contradiction, the second estimate follows.

Lemma 7.5.7 local tree control
#

For all \(J \in \mathcal{J}'\) and all bounded \(g\) with bounded support

\[ \sup _{B^\circ {}(J)} |T_{\mathfrak {T}(\mathfrak {u}_2)\setminus \mathfrak {S}}^* g| \le 2^{104a^3} \inf _J M_{\mathcal{B},1}|g| \]
Proof

By the triangle inequality and since \(T_{{\mathfrak p}}^* g = \mathbf{1}_{B({\mathrm{c}}({\mathfrak p}), 5D^{{\mathrm{s}}({\mathfrak p})})} T_{{\mathfrak p}}^* g\), we have

\[ \sup _{B^\circ {}(J)} |T_{{\mathfrak T}({\mathfrak u}_2) \setminus \mathfrak {S}}^* g| \leq \sup _{B^\circ {}(J)} \sum _{\substack {{\mathfrak p}\in {\mathfrak T}({\mathfrak u}_2) \setminus \mathfrak {S}\\ B({\mathcal{I}}({\mathfrak p})) \cap B^\circ (J) \ne \emptyset }} |T_{{\mathfrak p}}^*g|\, . \]

By Lemma 7.5.6, this is at most

\begin{equation} \label{eq-sep-tree-aux-3} \sum _{s = s(J)}^{s(J) + 3} \sum _{\substack {{\mathfrak p}\in {\mathfrak P}, {\mathrm{s}}({\mathfrak p}) = s\\ B({\mathcal{I}}({\mathfrak p})) \cap B^\circ (J) \ne \emptyset }} \sup _{B^\circ {}(J)} |T_{{\mathfrak p}}^* g|\, . \end{equation}
7.5.16

If \(x \in E({\mathfrak p})\) and \(B({\mathcal{I}}({\mathfrak p})) \cap B^\circ (J) \ne \emptyset \), then

\[ B(c(J), 16D^{{\mathrm{s}}({\mathfrak p})}) \subset B(x, 32 D^{{\mathrm{s}}({\mathfrak p})})\, , \]

by 2.0.10 and the triangle inequality. Using the doubling property 1.0.5, it follows that

\[ \mu (B(x, D^{{\mathrm{s}}({\mathfrak p})})) \ge 2^{-5a} \mu (B(c(J), 16D^{{\mathrm{s}}({\mathfrak p})}))\, . \]

Using 7.4.1, 2.1.3 and that \(a \ge 4\), we bound 7.5.16 by

\[ 2^{103a^3}\sum _{s = s(J)}^{s(J) + 3} \sum _{\substack {{\mathfrak p}\in {\mathfrak P}, {\mathrm{s}}({\mathfrak p}) = s\\ B({\mathcal{I}}({\mathfrak p})) \cap B^\circ (J) \ne \emptyset }} \frac{1}{\mu (B(c(J), 16 D^s)} \int _{E({\mathfrak p})} |g| \, \mathrm{d}\mu \, . \]

For each \(I \in \mathcal{D}\), the sets \(E({\mathfrak p})\) for \({\mathfrak p}\in {\mathfrak P}\) with \({\mathcal{I}}({\mathfrak p}) = I\) are pairwise disjoint by 2.0.20 and 2.0.13. Further, if \(B({\mathcal{I}}({\mathfrak p})) \cap B^\circ (J) \ne \emptyset \) and \({\mathrm{s}}({\mathfrak p}) \ge s(J)\), then \(E({\mathfrak p}) \subset B(c(J), 32 D^{{\mathrm{s}}({\mathfrak p})})\). Thus the last display is bounded by

\[ 2^{103a^3}\sum _{s = s(J)}^{s(J) + 3} \frac{1}{\mu (B(c(J), 32 D^s))} \int _{B(c(J), 16 D^s)} |g| \, \mathrm{d}\mu \, . \]
\[ \le \inf _{x' \in J} 2^{103a^3 +2} M_{\mathcal{B}, 1} |g|\, . \]

The lemma follows since \(a \ge 4\).

Lemma 7.5.8 scales impacting interval

Let \({\mathfrak C}= {\mathfrak T}({\mathfrak u}_1)\) or \({\mathfrak C}= {\mathfrak T}({\mathfrak u}_2) \cap \mathfrak {S}\). Then for each \(J \in \mathcal{J}'\) and \({\mathfrak p}\in {\mathfrak C}\) with \(B({\mathcal{I}}({\mathfrak p})) \cap B(J) \neq \emptyset \), we have \({\mathrm{s}}({\mathfrak p}) \ge s(J)\).

Proof

By Lemma 7.4.7, we have that in both cases, \({\mathfrak C}\subset \mathfrak {S}\). If \({\mathfrak p}\in {\mathfrak C}\) with \(B({\mathcal{I}}({\mathfrak p})) \cap B(J) \neq \emptyset \) and \({\mathrm{s}}({\mathfrak p}) {\lt} s(J)\), then \({\mathcal{I}}({\mathfrak p}) \subset B(c(J), 100 D^{s(J) + 1})\). Since \({\mathfrak p}\in \mathfrak {S}\), it follows from the definition of \(\mathcal{J}'\) that \(s(J) = -S\), which contradicts \({\mathrm{s}}({\mathfrak p}) {\lt} s(J)\).

Let \({\mathfrak C}= {\mathfrak T}({\mathfrak u}_1)\) or \({\mathfrak C}= {\mathfrak T}({\mathfrak u}_2) \cap \mathfrak {S}\). Then for each \(J \in \mathcal{J}'\) and all bounded \(g\) with bounded support, we have

\begin{align} \label{TreeUB} \sup _{B(J)} |T_{{\mathfrak C}}^*g| \leq \inf _{B^\circ {}(J)} |T^*_{{\mathfrak C}} g| + 2^{154a^3} \inf _{J} M_{\mathcal{B}, 1} |g| \end{align}

and for all \(y,y' \in B(J)\)

\[ |e({\mathcal{Q}}({\mathfrak u})(y)) T_{{\mathfrak C}}^* g(y) - e({\mathcal{Q}}({\mathfrak u})(y')) T_{{\mathfrak C}}^* g(y')| \]

\begin{equation} \label{TreeHolder} \le 2^{153a^3} \left(\frac{\rho (y,y')}{D^{s(J)}}\right)^{1/a} \inf _J M_{\mathcal{B},1} |g|\, . \end{equation}
7.5.18

Proof

Note that 7.5.17 follows from 7.5.18, since for \(y'\in B^\circ {}(J)\), by the triangle inequality,

\[ \left(\frac{\rho (y,y')}{D^{s(J)}}\right)^{1/a}\le \Big(8 + \frac{1}8\Big)^{1/a}\le 2^{a^3}. \]

By the triangle inequality, Lemma 7.4.1 and Lemma 7.5.5, we have for all \(y, y' \in B(J)\)

\begin{equation} \label{eq-C-Lip} |e({\mathcal{Q}}({\mathfrak u})(y)) T_{{\mathfrak C}}^* g(y) - e({\mathcal{Q}}({\mathfrak u})(y')) T_{{\mathfrak C}}^* g(y')| \end{equation}
7.5.19

\[ \leq \sum _{\substack {{\mathfrak p}\in {\mathfrak C}\\ B({\mathcal{I}}({\mathfrak p})) \cap B(J) \neq \emptyset }} |e({\mathcal{Q}}({\mathfrak u})(y)) T_{{\mathfrak p}}^* g(y) - e({\mathcal{Q}}({\mathfrak u})(y')) T_{{\mathfrak p}}^* g(y')| \]
\[ \le 2^{151a^3}\rho (y,y')^{1/a} \sum _{\substack {{\mathfrak p}\in {\mathfrak C}\\ B({\mathcal{I}}({\mathfrak p})) \cap B(J) \neq \emptyset }} \frac{D^{- {\mathrm{s}}({\mathfrak p})/a}}{\mu (B({\mathrm{c}}({\mathfrak p}), 4D^{{\mathrm{s}}({\mathfrak p})}))} \int _{E({\mathfrak p})} |g| \, \mathrm{d}\mu \, . \]

By Lemma 7.5.8, we have \({\mathrm{s}}({\mathfrak p}) \ge s(J)\) for all \({\mathfrak p}\) occurring in the sum. Further, for each \(s \ge s(J)\), the sets \(E({\mathfrak p})\) for \({\mathfrak p}\in {\mathfrak P}\) with \({\mathrm{s}}({\mathfrak p}) = s\) are pairwise disjoint by 2.0.20 and 2.0.13, and contained in \(B(c(J), 32D^{s})\) by 2.0.10 and the triangle inequality. Using also the doubling estimate 1.0.5, we obtain that the expression in the last display can be estimated by

\[ 2^{151a^3}\rho (y,y')^{1/a} \sum _{S \ge s \ge s(J)} D^{-s/a} \frac{2^{3a}}{\mu (B(c(J), 32D^{s}))} \int _{B(c(J), 32D^{s})} |g| \, \mathrm{d}\mu \]
\[ \le 2^{152a^3} \left(\frac{\rho (y,y')}{D^s}\right)^{1/a} \sum _{S \ge s \ge s(J)} D^{(s(J) - s)/a} \inf _J M_{\mathcal{B},1} |g|\, . \]

By convexity of \(t \mapsto D^t\) and since \(D \ge 2\), we have for all \(-1 \le t \le 0\)

\[ D^t \le 1 + t(1 - \frac{1}{D}) \le 1 + \frac{1}{2}t\, . \]

Since \(-1 \le -1/a {\lt}0\), it follows that

\[ \sum _{S \ge s \ge s(J)} D^{(s(J) - s)/a} \le \frac{1}{1 - D^{-1/a}} \le 2a \le 2^a\, . \]

Estimate 7.5.18, and therefore the lemma, follow.

Lemma 7.5.10 global tree control 2

We have for all \(J \in \mathcal{J}'\) and all bounded \(g\) with bounded support

\[ \sup _{B(J)} |T^*_{{\mathfrak T}({\mathfrak u}_2) \cap \mathfrak {S}} g| \le \inf _{B^\circ {}(J)} |T^*_{{\mathfrak T}({\mathfrak u}_2)} g| + 2^{155a^3} \inf _{J} M_{\mathcal{B},1}|g|\, . \]
Proof

By Lemma 7.5.9

\[ \sup _{B(J)} |T^*_{{\mathfrak T}({\mathfrak u}_2) \cap \mathfrak {S}} g| \le \inf _{B^\circ {}(J)} |T_{{\mathfrak T}({\mathfrak u}_2) \cap \mathfrak {S}}^* g| + 2^{154a^3} \inf _{J} M_{\mathcal{B}, 1} |g| \]
\[ \le \inf _{B^\circ {}(J)} |T_{{\mathfrak T}({\mathfrak u}_2)}^* g| + \sup _{B^\circ {}(J)} |T_{{\mathfrak T}({\mathfrak u}_2) \setminus \mathfrak {S}}^* g| + 2^{154a^3} \inf _{J} M_{\mathcal{B}, 1} |g|\, , \]

and by Lemma 7.5.7

\[ \le \inf _{B^\circ {}(J)} |T_{{\mathfrak T}({\mathfrak u}_2)}^* g| + (2^{104a^3} + 2^{154a^3}) \inf _{J} M_{\mathcal{B}, 1} |g|\, . \]

This completes the proof.

Proof of Lemma 7.5.4

Let \(P\) be the product on the right hand side of 7.5.8, and \(h_J\) as defined in 7.5.7.

By 7.5.3 and Lemma 7.4.1, the function \(h_J\) is supported in \(B(J) \cap {\mathcal{I}}({\mathfrak u}_1)\). By 7.5.3 and Lemma 7.5.9, we have for all \(y \in B(J)\):

\[ |h_J(y)| \le 2^{308a^3} P\, . \]

We have by the triangle inequality

\begin{align} & |h_J(y) - h_J(y’)|\nonumber \\ \label{eq-h-Lip-1} & \le |\chi _J(y) - \chi _J(y’)| |T_{{\mathfrak T}({\mathfrak u}_1)}^* g_1(y)| |T_{{\mathfrak T}({\mathfrak u}_2) \cap \mathfrak {S}}^* g_2(y)|\\ \label{eq-h-Lip-2} & + |\chi _J(y’)| |T_{{\mathfrak T}({\mathfrak u}_1)}^* g_1(y) - T_{{\mathfrak T}({\mathfrak u}_1)}^* g_1(y’)| |T_{{\mathfrak T}({\mathfrak u}_2) \cap \mathfrak {S}}^* g_2(y)|\\ \label{eq-h-Lip-3} & + |\chi _J(y’)| |T_{{\mathfrak T}({\mathfrak u}_1)}^* g_1(y’)| |T_{{\mathfrak T}({\mathfrak u}_2) \cap \mathfrak {S}}^* g_2(y) - T_{{\mathfrak T}({\mathfrak u}_2) \cap \mathfrak {S}}^* g_2(y’)|\, . \end{align}

As \(h_J\) is supported in \({\mathcal{I}}({\mathfrak u}_1)\), we can assume without loss of generality that \(y' \in {\mathcal{I}}({\mathfrak u}_1)\). If \(y \notin {\mathcal{I}}({\mathfrak u}_1)\), then 7.5.20 vanishes. If \(y \in {\mathcal{I}}({\mathfrak u}_1)\) then we have by 7.5.4, Lemma 7.5.9 and Lemma 7.5.10

\[ \eqref{eq-h-Lip-1} \le 2^{534a^3} \frac{\rho (y,y')}{D^{s(J)}} P\, , \]

where \(P\) denotes the product on the right hand side of 7.5.8.

By 7.5.3, Lemma 7.5.9 and Lemma 7.5.10, we have

\[ \eqref{eq-h-Lip-2} \le 2^{310a^3} P\, . \]

By 7.5.3, and twice Lemma 7.5.9, we have

\[ \eqref{eq-h-Lip-3} \le 2^{308a^3} P\, . \]

Using that \(\rho (y,y') \le 16D^{s(J)}\) and \(a \ge 4\), the lemma follows.

7.5.3 The van der Corput estimate

Lemma 7.5.11 lower oscillation bound

For all \(J \in \mathcal{J}'\), we have that

\[ d_{B(J)}({\mathcal{Q}}({\mathfrak u}_1), {\mathcal{Q}}({\mathfrak u}_2)) \ge 2^{-201a^3} 2^{Zn/2}\, . \]
Proof

Since \(\emptyset \ne {\mathfrak T}({\mathfrak u}_1) \subset \mathfrak {S}\) by Lemma 7.4.7, there exists at least one tile \({\mathfrak p}\in \mathcal{S}\) with \({\mathcal{I}}({\mathfrak p}) \subsetneq {\mathcal{I}}({\mathfrak u}_1)\). Thus \({\mathcal{I}}({\mathfrak u}_1) \notin \mathcal{J}'\), so \(J \subsetneq {\mathcal{I}}({\mathfrak u}_1)\). Thus there exists a cube \(J' \in \mathcal{D}\) with \(J \subset J'\) and \(s(J') = s(J) + 1\), by 2.0.7 and 2.0.8. By definition of \(\mathcal{J'}\) and the triangle inequality, there exists \({\mathfrak p}\in \mathfrak {S}\) such that

\[ {\mathcal{I}}({\mathfrak p}) \subset B(c(J'), 100 D^{s(J') + 1}) \subset B(c(J), 128 D^{s(J)+2})\, . \]

Thus, by definition of \(\mathfrak {S}\):

\begin{align*} 2^{Zn/2} \le d_{{\mathfrak p}}({\mathcal{Q}}({\mathfrak u}_1), {\mathcal{Q}}({\mathfrak u}_2)) \le d_{B(c(J), 128 D^{s(J)+2})}({\mathcal{Q}}({\mathfrak u}_1), {\mathcal{Q}}({\mathfrak u}_2))\, . \end{align*}

By the doubling property 1.0.8, this is

\[ \le 2^{200a^3 + 4a} d_{B(J)}({\mathcal{Q}}({\mathfrak u}_1), {\mathcal{Q}}({\mathfrak u}_2))\, , \]

which gives the lemma using \(a \ge 4\).

Now we are ready to prove Lemma 7.4.5.

Proof of Lemma 7.4.5

We have

\[ \eqref{eq-lhs-big-sep-tree} = \left| \int _{X} T_{{\mathfrak T}({\mathfrak u}_1)}^* g_1 \overline{T_{{\mathfrak T}({\mathfrak u}_2) \cap \mathfrak {S}}^* g_2 }\right|\, . \]

By Lemma 7.4.1, the right hand side is supported in \({\mathcal{I}}({\mathfrak u}_1)\). Using 7.5.2 of Lemma 7.5.2 and the definition 7.5.7 of \(h_J\), we thus have

\[ \le \sum _{J \in \mathcal{J}'} \left|\int _{B(J)} e({\mathcal{Q}}({\mathfrak u}_2)(y) - {\mathcal{Q}}({\mathfrak u}_1)(y)) h_J(y) \, \mathrm{d}\mu (y) \right|\, . \]

Using Proposition 2.0.5 with the ball \(B(J)\), we bound this by

\[ \le 2^{8a} \sum _{J \in \mathcal{J}'} \mu (B(J)) \| h_J\| _{C^{\tau }(B(J))} (1 + d_{B(J)}({\mathcal{Q}}({\mathfrak u}_1), {\mathcal{Q}}({\mathfrak u}_1)))^{-1/(2a^2+a^3)}\, . \]

Using Lemma 7.5.4, Lemma 7.5.11 and \(a \ge 4\), we have that the above is bounded from above by

\begin{multline} \label{eq-big-sep-1} \le 2^{540a^3} 2^{-Zn/(4a^2 + 2a^3)} \sum _{J \in \mathcal{J}'} \mu (B(J)) \\ \times \prod _{j=1}^2 (\inf _{B^\circ {}(J)} |T_{{\mathfrak T}({\mathfrak u}_j)}^* g_j| + \inf _J M_{\mathcal{B},1} g_j)\, . \end{multline}

By the doubling property 1.0.5

\[ \mu (B(J)) \le 2^{6a} \mu (B^\circ {}(J))\, , \]

thus

\[ \mu (B(J)) \prod _{j=1}^2 (\inf _{B^\circ {}(J)} |T_{{\mathfrak T}({\mathfrak u}_j)}^* g_j| + \inf _J M_{\mathcal{B},1} g_j) \]
\[ \le 2^{6a} \int _{B^\circ {}(J)} \prod _{j=1}^2 ( |T_{{\mathfrak T}({\mathfrak u}_j)}^* g_j|(x) + M_{\mathcal{B},1} g_j(x)) \, \mathrm{d}\mu (x) \]
\[ \le 2^{6a} \int _J \prod _{j=1}^2 ( |T_{{\mathfrak T}({\mathfrak u}_j)}^* g_j|(x) + M_{\mathcal{B},1} g_j(x)) \, \mathrm{d}\mu (x)\, . \]

Summing over \(J \in \mathcal{J}'\), we obtain

\[ \eqref{eq-big-sep-1} \le 2^{541a^3} 2^{-Zn/(4a^2 + 2a^3)} \int _X \prod _{j=1}^2 ( |T_{{\mathfrak T}({\mathfrak u}_j)}^* g_j|(x) + M_{\mathcal{B},1} g_j(x)) \, \mathrm{d}\mu (x)\, . \]

Applying the Cauchy-Schwarz inequality, Lemma 7.4.5 follows.

7.6 Proof of The Remaining Tiles Lemma

We define

\[ \mathcal{J}' = \{ J \in \mathcal{J}({\mathfrak T}({\mathfrak u}_1)) \, : \, J \subset {\mathcal{I}}({\mathfrak u}_1)\} \, , \]

note that this is different from the \(\mathcal{J}'\) defined in the previous subsection.

Lemma 7.6.1 dyadic partition 2

We have

\[ {\mathcal{I}}({\mathfrak u}_1) = \dot{\bigcup _{J \in \mathcal{J}'}} J\, . \]
Proof

By Lemma 7.1.2, it remains only to show that each \(J \in \mathcal{J}({\mathfrak T}({\mathfrak u}_1))\) with \(J \cap {\mathcal{I}}({\mathfrak u}_1) \ne \emptyset \) is in \(\mathcal{J}'\). But if \(J \notin \mathcal{J}'\), then by 2.0.8 \({\mathcal{I}}({\mathfrak u}_1) \subsetneq J\). Pick \({\mathfrak p}\in {\mathfrak T}({\mathfrak u}_1)\). Then \({\mathcal{I}}({\mathfrak p}) \subsetneq J\). This contradicts the definition of \(\mathcal{J}({\mathfrak T}({\mathfrak u}_1))\).

Lemma 7.4.6 follows from the following key estimate.

Lemma 7.6.2 bound for tree projection

We have

\[ \| P_{\mathcal{J}'}|T_{{\mathfrak T}({\mathfrak u}_2) \setminus \mathfrak {S}}^* g_2|\| _2 \le 2^{118a^3} 2^{-\frac{100}{202a}Zn\kappa } \| \mathbf{1}_{{\mathcal{I}}({\mathfrak u}_1)} M_{\mathcal{B},1} |g_2|\| _2 \]

We prove this lemma below. First, we deduce Lemma 7.4.6.

Proof of Lemma 7.4.6

By Lemma 7.2.1 and Lemma 7.4.1, we have

\begin{align*} \eqref{eq-lhs-small-sep-tree} \le 2^{104a^3} \| P_{\mathcal{L}({\mathfrak T}({\mathfrak u}_1))} |g_1\mathbf{1}_{{\mathcal{I}}({\mathfrak u}_1)}| \| _2 \| \mathbf{1}_{{\mathcal{I}}({\mathfrak u}_1)} P_{\mathcal{J}({\mathfrak T}({\mathfrak u}_1) )}|T_{{\mathfrak T}({\mathfrak u}_2) \setminus \mathfrak {S}}^* g_2|\| _2\, . \end{align*}

It follows from the definition of the projection operator \(P\) and Jensen’s inequality that

\[ \| P_{\mathcal{L}({\mathfrak T}({\mathfrak u}_1))} |g_1\mathbf{1}_{{\mathcal{I}}({\mathfrak u}_1)}| \| _2 \le \| g_1 \mathbf{1}_{{\mathcal{I}}({\mathfrak u}_1)}\| _2\, . \]

Since cubes in \(\mathcal{J}'\) are pairwise disjoint and by Lemma 7.6.1, a cube \(J \in \mathcal{J}'\) intersect \({\mathcal{I}}({\mathfrak u}_1)\) if and only if \(J \in \mathcal{J}'\). Thus

\[ \mathbf{1}_{{\mathcal{I}}({\mathfrak u}_1)} P_{\mathcal{J}({\mathfrak T}({\mathfrak u}_1) )}|T_{{\mathfrak T}({\mathfrak u}_2) \setminus \mathfrak {S}}^* g_2| = P_{\mathcal{J}'}|T_{{\mathfrak T}({\mathfrak u}_2) \setminus \mathfrak {S}}^* g_2|\, . \]

Combining this with Lemma 7.6.2, the definition 2.0.2 and \(a \ge 4\) proves the lemma.

We need two more auxiliary lemmas before we prove Lemma 7.6.2.

Lemma 7.6.3 thin scale impact
#

If \({\mathfrak p}\in {\mathfrak T}({\mathfrak u}_2) \setminus \mathfrak {S}\) and \(J \in \mathcal{J'}\) with \(B({\mathcal{I}}({\mathfrak p})) \cap B(J) \ne \emptyset \), then

\[ {\mathrm{s}}({\mathfrak p}) \le s(J) + 2 - \frac{Zn}{202a^3}\, . \]
Proof

Suppose that \({\mathrm{s}}({\mathfrak p}) {\gt} s(J) + 2 -\frac{Zn}{202a^3} =: s(J) - s_1\). Then, we have

\[ \rho ({\mathrm{c}}({\mathfrak p}), c(J)) \le 8D^{s(J)}+8D^{{\mathrm{s}}({\mathfrak p})} \le 16 D^{{\mathrm{s}}({\mathfrak p}) + s_1}\, . \]

There exists a tile \({\mathfrak q}\in {\mathfrak T}({\mathfrak u}_1)\). By 2.0.32, it satisfies \({\mathcal{I}}({\mathfrak q}) \subsetneq {\mathcal{I}}({\mathfrak u}_1)\). Thus \({\mathcal{I}}({\mathfrak u}_1) \notin \mathcal{J}'\). It follows that \(J \subsetneq {\mathcal{I}}({\mathfrak u}_1)\). By 2.0.7 and 2.0.8, there exists a cube \(J' \in \mathcal{D}\) with \(J \subset J'\) and \(s(J') = s(J) + 1\). By definition of \(\mathcal{J}'\), there exists a tile \({\mathfrak p}' \in {\mathfrak T}({\mathfrak u}_1)\) with

\[ {\mathcal{I}}({\mathfrak p}') \subset B(c(J'), 100 D^{s(J') + 1})\, . \]

By the triangle inequality, the definition 2.0.1 and \(a \ge 4\), we have

\[ B(c(J'), 100 D^{s(J')+1}) \subset B({\mathrm{c}}({\mathfrak p}), 128 D^{{\mathrm{s}}({\mathfrak p}) + s_1 + 1})\, . \]

Since \({\mathfrak p}' \in {\mathfrak T}({\mathfrak u}_1)\) and \({\mathcal{I}}({\mathfrak u}_1) \subset {\mathcal{I}}({\mathfrak u}_2)\), we have by 2.0.36

\[ d_{{\mathfrak p}'}({\mathcal{Q}}({\mathfrak p}'), {\mathcal{Q}}({\mathfrak u}_2)) {\gt} 2^{Z(n+1)}\, . \]

Hence, by 2.0.32, the triangle inequality and using that by 2.0.3 \(Z \ge 2\)

\[ d_{{\mathfrak p}'}({\mathcal{Q}}({\mathfrak u}_1), {\mathcal{Q}}({\mathfrak u}_2)) {\gt} 2^{Z(n+1)} - 4 \ge 2^{Zn}\, . \]

It follows that

\[ 2^{Zn} \le d_{{\mathfrak p}'}({\mathcal{Q}}({\mathfrak u}_1), {\mathcal{Q}}({\mathfrak u}_2)) \le d_{B({\mathrm{c}}({\mathfrak p}), 128 D^{{\mathrm{s}}({\mathfrak p}) + s_1+ 1})}({\mathcal{Q}}({\mathfrak u}_1), {\mathcal{Q}}({\mathfrak u}_2))\, . \]

Using 1.0.8, we obtain

\[ \le 2^{9a + 100a^3 (s_1+1)} d_{{\mathfrak p}}({\mathcal{Q}}({\mathfrak u}_1), {\mathcal{Q}}({\mathfrak u}_2))\, . \]

Since \({\mathfrak p}' \notin \mathfrak {S}\) this is bounded by

\[ \le 2^{9a + 100a^3 (s_1+1)} 2^{Zn/2}\, . \]

Thus

\[ Z n/2 \le 9a + 100a^3(s_1 + 1)\, , \]

contradicting the definition of \(s_1\).

Lemma 7.6.4 square function count

For each \(J \in \mathcal{J}'\) and all \(s \ge 0\), we have

\[ \frac{1}{\mu (J)} \int _J \Bigg(\sum _{\substack {I \in \mathcal{D}, s(I) = s(J) - s\\ I \cap {\mathcal{I}}({\mathfrak u}_1) = \emptyset \\ J \cap B(I) \ne \emptyset }} \mathbf{1}_{B(I)}\bigg)^2 \, \mathrm{d}\mu \le 2^{14a+1} (8 D^{-s})^\kappa \, . \]
Proof

Since \(J \in \mathcal{J}'\) we have \(J \subset {\mathcal{I}}({\mathfrak u}_1)\). Thus, if \(B(I) \cap J \ne \emptyset \) then

\begin{equation} \label{eq-sep-small-incl} B(I) \cap J \subset \{ x \in J \ : \ \rho (x, X \setminus J) \le 8D^{s(I)}\} \, . \end{equation}
7.6.1

Furthermore, for each \(s\) the balls \(B(I)\) with \(s(I) = s\) have bounded overlap: Consider the collection \(\mathcal{D}_{s,x}\) of all \(I \in \mathcal{D}\) with \(x \in B(I)\) and \(s(I) = s\). By 2.0.10 and 2.0.8, the balls \(B(c(I), \frac{1}{4} D^{s(I)})\), \(I \in \mathcal{D}_{s,x}\) are disjoint, and by the triangle inequality, they are contained in \(B(x, 9 D^{s})\). By the doubling property 1.0.5, we have

\[ \mu (B(x, 9D^{s})) \le 2^{7a} \mu (B(c(I), \frac{1}{4} D^{s(I)})) \]

for each \(I \in \mathcal{D}_{s,x}\). Thus

\[ \mu (B(x, 9D^{s})) \ge \sum _{I \in \mathcal{D}_{s,x}} \mu (B(c(I), \frac{1}{4} D^{s(I)})) \ge 2^{-7a} |\mathcal{D}_{s,x}| \mu (B(x, 9D^{s}))\, . \]

Dividing by the positive \(\mu (B(x, 9D^{s}))\), we obtain that for each \(x\)

\begin{equation} \label{eq-sep-small-bound} \Bigg(\sum _{\substack {I \in \mathcal{D}, s(I) = s(J) - s\\ I \cap {\mathcal{I}}({\mathfrak u}_1) = \emptyset \\ J \cap B(I) \ne \emptyset }} \mathbf{1}_{B(I)}(x) \bigg)^2 \le |\mathcal{D}_{s(J) - s,x}|^2 \le 2^{14a} \, . \end{equation}
7.6.2

Combining 7.6.1, 7.6.2 and the small boundary property 2.0.11, noting that \(8D^{s(I)}=8D^{-s}D^{s(J)}\), the lemma follows.

Proof of Lemma 7.6.2

Expanding the definition of \(P_{\mathcal{J}'}\), we have

\[ \| P_{\mathcal{J}'}|T_{{\mathfrak T}({\mathfrak u}_2) \setminus \mathfrak {S}}^* g_2|\| _2 \]
\[ = \left(\sum _{J \in \mathcal{J}'} \frac{1}{\mu (J)} \left|\int _J \sum _{{\mathfrak p}\in {\mathfrak T}({\mathfrak u}_2) \setminus \mathfrak {S}} T_{{\mathfrak p}}^* g_2 \, \mathrm{d}\mu (y) \right|^2 \right)^{1/2}\, . \]

We split the innermost sum according to the scale of the tile \({\mathfrak p}\), and then apply the triangle inequality and Minkowski’s inequality:

\[ \le \sum _{s = -S}^S \left( \sum _{J \in \mathcal{J}'} \frac{1}{\mu (J)} \left|\int _J \sum _{\substack {{\mathfrak p}\in {\mathfrak T}({\mathfrak u}_2) \setminus \mathfrak {S}\\ {\mathrm{s}}({\mathfrak p}) = s}} T_{{\mathfrak p}}^* g_2 \, \mathrm{d}\mu (y) \right|^2\right)^{1/2}\, . \]

By Lemma 7.4.1, the integral in the last display is \(0\) if \(J \cap B({\mathcal{I}}({\mathfrak p})) = \emptyset \). By Lemma 7.6.3, it follows with \(s_1 := \frac{Zn}{202a^3} - 2\):

\begin{equation} \label{eq-sep-tree-small-1} = \sum _{s = s_1}^{s_1 + 2S} \Bigg( \sum _{J \in \mathcal{J}'} \frac{1}{\mu (J)} \Bigg|\int _J \sum _{\substack {{\mathfrak p}\in {\mathfrak T}({\mathfrak u}_2) \setminus \mathfrak {S}\\ {\mathrm{s}}({\mathfrak p}) = s(J) - s\\ J \cap B({\mathcal{I}}({\mathfrak p})) \ne \emptyset }} T_{{\mathfrak p}}^* g_2 \, \mathrm{d}\mu (y) \Bigg|^2\Bigg)^{1/2}\, . \end{equation}
7.6.3

We have by Lemma 7.4.1 and 2.1.3

\[ \int |T_{{\mathfrak p}}^* g_2|(y) \, \mathrm{d}\mu (y) \]
\[ \le 2^{102a^3} \int _{B({\mathcal{I}}({\mathfrak p}))} \int \frac{1}{\mu (B(x, D^{{\mathrm{s}}({\mathfrak p})}))} \mathbf{1}_{E({\mathfrak p})}(x) |g_2|(x) \, \mathrm{d}\mu (x) \, \mathrm{d}\mu (y)\, . \]

If \(x \in E({\mathfrak p}) \subset {\mathcal{I}}({\mathfrak p})\), then we have by 2.0.10 that

\[ B({\mathrm{c}}({\mathfrak p}), 4D^{{\mathrm{s}}({\mathfrak p})}) \subset B({\mathcal{I}}({\mathfrak p}))\, . \]

Using the doubling property 1.0.5, it follows that

\[ \mu (B({\mathrm{c}}({\mathfrak p}), 4D^{{\mathrm{s}}({\mathfrak p})})) \le 2^{3a} \mu (B(x, D^s))\, . \]

Thus, using also \(a \ge 4\)

\[ \int |T_{{\mathfrak p}}^* g_2|(y) \, \mathrm{d}\mu (y) \]
\[ \le 2^{103 a^3} \int _{B({\mathcal{I}}({\mathfrak p}))} \int \frac{1}{\mu (B({\mathrm{c}}({\mathfrak p}), 4D^{{\mathrm{s}}({\mathfrak p})}))} \mathbf{1}_{E({\mathfrak p})}(x) |g_2|(x) \, \mathrm{d}\mu (x) \, \mathrm{d}\mu (y)\, . \]

Since for each \(I \in \mathcal{D}\) the sets \(E({\mathfrak p}), {\mathfrak p}\in {\mathfrak P}(I)\) are disjoint, it follows that

\[ \bigg| \int _J \sum _{\substack {{\mathfrak p}\in {\mathfrak T}({\mathfrak u}_2) \setminus \mathfrak {S}\\ {\mathcal{I}}({\mathfrak p}) = I\\ J \cap B({\mathcal{I}}({\mathfrak p})) \ne \emptyset }} T_{{\mathfrak p}}^* g_2 \, \mathrm{d}\mu \bigg| \]
\[ \le 2^{103a^3} \int _J \mathbf{1}_{B(I)} \frac{1}{\mu (B({\mathrm{c}}({\mathfrak p}), 4D^{{\mathrm{s}}({\mathfrak p})}))} \int _{B({\mathrm{c}}({\mathfrak p}), 4D^{{\mathrm{s}}({\mathfrak p})})} |g_2|(x) \, \mathrm{d}\mu (x) \]
\[ \le 2^{103a^3} \int _J M_{\mathcal{B},1} |g_2|(y) \mathbf{1}_{B(I)}(y) \, \mathrm{d}\mu (y)\, . \]

By Lemma 7.4.7, we have \({\mathcal{I}}({\mathfrak p}) \cap {\mathcal{I}}({\mathfrak u}_1) = \emptyset \) for all \({\mathfrak p}\in {\mathfrak T}({\mathfrak u}_2) \setminus \mathfrak {S}\). Thus we can estimate 7.6.3 by

\[ 2^{103a^3} \sum _{s = s_1}^{s_1 + 2S} \Bigg( \sum _{J \in \mathcal{J}'} \frac{1}{\mu (J)} \Bigg|\int _J \sum _{\substack {I \in \mathcal{D}, s(I) = s(J) - s\\ I \cap {\mathcal{I}}({\mathfrak u}_1) = \emptyset \\ J \cap B(I) \ne \emptyset }} M_{\mathcal{B},1} |g_2| \mathbf{1}_{B(I)} \, \mathrm{d}\mu \Bigg|^2\Bigg)^{\frac12}\, , \]

which is by Cauchy-Schwarz at most

\begin{equation} \label{eq-sep-tree-small-2} 2^{103a^3} \sum _{s = s_1}^{s_1 + 2S} \Bigg( \sum _{J \in \mathcal{J}'} \int _J ( M_{\mathcal{B},1} |g_2|)^2 \frac{1}{\mu (J)} \int _J \Bigg(\sum _{\substack {I \in \mathcal{D}, s(I) = s(J) - s\\ I \cap {\mathcal{I}}({\mathfrak u}_1) = \emptyset \\ J \cap B(I) \ne \emptyset }} \mathbf{1}_{B(I)}\bigg)^2 \, \mathrm{d}\mu \Bigg)^{\frac12}\, . \end{equation}
7.6.4

Using Lemma 7.6.4, we bound 7.6.4 by

\[ 2^{103a^3} \sum _{s = s_1}^{s_1 + 2S} \left(\sum _{J \in \mathcal{J}'} \int _J (M_{\mathcal{B},1} |g_2|)^2 2^{104a^2} (8 D^{-s})^\kappa \right)^{\frac12}\, , \]

and, since dyadic cubes in \(\mathcal{J}'\) form a partition of \({\mathcal{I}}({\mathfrak u}_1)\) by Lemma 7.6.1, \(\kappa \le 1\) by 2.0.2, and \(a \ge 4\)

\[ \le 2^{116a^3} \sum _{s = s_1}^{s_1 + 2S} D^{-s\kappa /2} \| \mathbf{1}_{{\mathcal{I}}({\mathfrak u}_1)} M_{\mathcal{B},1} |g_2|\| _2 \]
\[ \le 2^{116a^3} D^{-s_1 \kappa /2} \frac{1}{1 - D^{-\kappa /2}} \| \mathbf{1}_{{\mathcal{I}}({\mathfrak u}_1)} M_{\mathcal{B},1} |g_2|\| _2\, . \]

By convexity of \(t \mapsto D^t\) and since \(D \ge 2\), we have for all \(-1 \le t \le 0\)

\[ D^t \le 1 + t(1 - \frac{1}{D}) \le 1 + \frac{1}{2}t\, . \]

Using this for \(t = -\kappa /2\) and using that \(s_1 = \frac{Zn}{202a^3} - 2\) and the definitions 2.0.1 and 2.0.2 of \(\kappa \) and \(D\)

\[ \le 2^{116a^3} 2^{-100a^2(\frac{Zn}{202a^3} - 2) \frac{\kappa }{2}} \frac{2}{\kappa } \| \mathbf{1}_{{\mathcal{I}}({\mathfrak u}_1)} M_{\mathcal{B},1} |g_2|\| _2 \]
\[ \le \frac{2^{117a^3 + 1}}{\kappa } 2^{-\frac{100}{202a}Zn\kappa } \| \mathbf{1}_{{\mathcal{I}}({\mathfrak u}_1)} M_{\mathcal{B},1} |g_2|\| _2\, . \]

Using the definition 2.0.2 of \(\kappa \) and \(a \ge 4\), the lemma follows.

7.7 Forests

In this subsection, we complete the proof of Proposition 2.0.4 from the results of the previous subsections.

Define an \(n\)-row to be an \(n\)-forest \(({\mathfrak U}, {\mathfrak T})\), i.e. satisfying conditions 2.0.32 - 2.0.37, such that in addition the sets \({\mathcal{I}}({\mathfrak u}), {\mathfrak u}\in {\mathfrak U}\) are pairwise disjoint.

Let \(({\mathfrak U}, {\mathfrak T})\) be an \(n\)-forest. Then there exists a decomposition

\[ {\mathfrak U}= \dot{\bigcup _{1 \le j \le 2^n}} {\mathfrak U}_j \]

such that for all \(j = 1, \dotsc , 2^n\) the pair \(({\mathfrak U}_j, {\mathfrak T}|_{{\mathfrak U}_j})\) is an \(n\)-row.

Proof

Define recursively \({\mathfrak U}_j\) to be a maximal disjoint set of tiles \({\mathfrak u}\) in

\[ {\mathfrak U}\setminus \bigcup _{j' {\lt} j} {\mathfrak U}_{j'} \]

with inclusion maximal \({\mathcal{I}}({\mathfrak u})\). Properties 2.0.32, -2.0.37 for \(({\mathfrak U}_j, {\mathfrak T}|_{{\mathfrak U}_k})\) follow immediately from the corresponding properties for \(({\mathfrak U}, {\mathfrak T})\), and the cubes \({\mathcal{I}}({\mathfrak u}), {\mathfrak u}\in {\mathfrak U}_j\) are disjoint by definition. The collections \({\mathfrak U}_j\) are also disjoint by definition.

Now we show by induction on \(j\) that each point is contained in at most \(2^n - j\) cubes \({\mathcal{I}}({\mathfrak u})\) with \({\mathfrak u}\in {\mathfrak U}\setminus \bigcup _{j' \le j} {\mathfrak U}_{j'}\). This implies that \(\bigcup _{j = 1}^{2^n} {\mathfrak U}_j = {\mathfrak U}\), which completes the proof of the Lemma. For \(j = 0\) each point is contained in at most \(2^n\) cubes by 2.0.34. For larger \(j\), if \(x\) is contained in any cube \({\mathcal{I}}({\mathfrak u})\) with \({\mathfrak u}\in {\mathfrak U}\setminus \bigcup _{j' {\lt} j} {\mathfrak U}_{j'}\), then it is contained in a maximal such cube. Thus it is contained in a cube in \({\mathcal{I}}({\mathfrak u})\) with \({\mathfrak u}\in {\mathfrak U}_j\). Thus the number \({\mathfrak u}\in {\mathfrak U}\setminus \bigcup _{j' \le j} {\mathfrak U}_{j'}\) with \(x\in {\mathcal{I}}({\mathfrak u})\) is zero, or is less than the number of \({\mathfrak u}\in {\mathfrak U}\setminus \bigcup _{j' \le j-1} {\mathfrak U}_{j'}\) with \(x \in {\mathcal{I}}({\mathfrak u})\) by at least one.

We pick a decomposition of the forest \(({\mathfrak U}, {\mathfrak T})\) into \(2^n\) \(n\)-rows

\begin{equation*} ({\mathfrak U}_j, {\mathfrak T}_j) := ({\mathfrak U}_j, {\mathfrak T}|_{{\mathfrak U}_j}) \end{equation*}

as in Lemma 7.7.1.

For each \(1 \le j \le 2^n\) and each bounded \(g\) with bounded support, we have

\begin{equation} \label{eq-row-bound-1} \left\| \sum _{{\mathfrak u}\in {\mathfrak U}_j} \sum _{{\mathfrak p}\in {\mathfrak T}({\mathfrak u})} T_{{\mathfrak p}}^* g\right\| _2 \le 2^{156a^3} 2^{-n/2} \| g\| _2 \end{equation}
7.7.1

and

\begin{equation} \label{eq-row-bound-2} \left\| \sum _{{\mathfrak u}\in {\mathfrak U}_j} \sum _{{\mathfrak p}\in {\mathfrak T}({\mathfrak u})} \mathbf{1}_F T_{{\mathfrak p}}^* g\right\| _2 \le 2^{257a^3} 2^{-n/2} \operatorname{\operatorname {dens}}_2(\bigcup _{{\mathfrak u}\in {\mathfrak U}}{\mathfrak T}({\mathfrak u}))^{1/2} \| g\| _2\, . \end{equation}
7.7.2

Proof

By Lemma 7.3.1 and the density assumption 2.0.35, we have for each \({\mathfrak u}\in {\mathfrak U}\) and all bounded \(f\) of bounded support that

\begin{equation} \label{eq-explicit-tree-bound-1} \left\| \sum _{{\mathfrak p}\in {\mathfrak T}({\mathfrak u})} T_{{\mathfrak p}} f \right\| _{2} \le 2^{155a^3} 2^{(4a+1-n)/2} \| f\| _2\, \end{equation}
7.7.3

and

\begin{equation} \label{eq-explicit-tree-bound-2} \left\| \sum _{{\mathfrak p}\in {\mathfrak T}({\mathfrak u})} T_{{\mathfrak p}} \mathbf{1}_F f \right\| _{2} \le 2^{256a^3} 2^{(4a + 1-n)/2} \operatorname{\operatorname {dens}}_2({\mathfrak T}({\mathfrak u}))^{1/2} \| f\| _2\, . \end{equation}
7.7.4

Since for each \(j\) the top cubes \({\mathcal{I}}({\mathfrak u})\), \({\mathfrak u}\in {\mathfrak U}_j\) are disjoint, we further have for all bounded \(g\) of bounded support by Lemma 7.4.1

\[ \left\| \mathbf{1}_F \sum _{{\mathfrak u}\in {\mathfrak U}_j} \sum _{{\mathfrak p}\in {\mathfrak T}({\mathfrak u})} T_{{\mathfrak p}}^* g\right\| _2^2 = \left\| \mathbf{1}_F \sum _{{\mathfrak u}\in {\mathfrak U}_j} \sum _{{\mathfrak p}\in {\mathfrak T}({\mathfrak u})} \mathbf{1}_{{\mathcal{I}}({\mathfrak u})} T_{{\mathfrak p}}^* \mathbf{1}_{{\mathcal{I}}({\mathfrak u})} g\right\| _2^2 \]
\[ = \sum _{{\mathfrak u}\in {\mathfrak U}_j} \int _{{\mathcal{I}}({\mathfrak u})} \left| \mathbf{1}_F \sum _{{\mathfrak p}\in {\mathfrak T}({\mathfrak u})} T_{{\mathfrak p}}^* \mathbf{1}_{{\mathcal{I}}({\mathfrak u})} g\right|^2 \, \mathrm{d}\mu \le \sum _{{\mathfrak u}\in {\mathfrak U}_j} \left\| \sum _{{\mathfrak p}\in {\mathfrak T}({\mathfrak u})} \mathbf{1}_F T_{{\mathfrak p}}^* \mathbf{1}_{{\mathcal{I}}({\mathfrak u})} g\right\| _2^2\, . \]

Applying the estimate for the adjoint operator following from equation 7.7.4, we obtain

\[ \le 2^{256a^3} 2^{(4a+1-n)/2} \max _{{\mathfrak u}\in {\mathfrak U}_j}\operatorname{\operatorname {dens}}_2({\mathfrak T}({\mathfrak u}))^{1/2} \sum _{{\mathfrak u}\in {\mathfrak U}_j} \left\| \mathbf{1}_{{\mathcal{I}}({\mathfrak u})} g\right\| _2^2\, . \]

Again by disjointedness of the cubes \({\mathcal{I}}({\mathfrak u})\), this is estimated by

\[ 2^{256a^3} 2^{(4a+1-n)/2} \max _{{\mathfrak u}\in {\mathfrak U}_j}\operatorname{\operatorname {dens}}_2({\mathfrak T}({\mathfrak u}))^{1/2} \| g\| _2^2\, . \]

Thus, 7.7.2 follows, since \(a \ge 4\). The proof of 7.7.1 from 7.7.3 is the same up to replacing \(F\) by \(X\).

Lemma 7.7.3 row correlation

For all \(1 \le j {\lt} j' \le 2^n\) and for all bounded \(g_1, g_2\) with bounded support, it holds that

\[ \left| \int \sum _{{\mathfrak u}\in {\mathfrak U}_j} \sum _{{\mathfrak u}' \in {\mathfrak U}_{j'}} \sum _{{\mathfrak p}\in {\mathfrak T}_j({\mathfrak u})} \sum _{{\mathfrak p}' \in {\mathfrak T}_{j'}({\mathfrak u}')} T^*_{{\mathfrak p}} g_1 \overline{T^*_{{\mathfrak p}'} g_2} \, \mathrm{d}\mu \right| \le 2^{862a^3-3n}\| g_1\| _2 \| g_2\| _2\, . \]
Proof

To save some space we will write for subsets \({\mathfrak C}\subset {\mathfrak P}\)

\[ T_{{\mathfrak C}}^* = \sum _{{\mathfrak p}\in {\mathfrak C}} T_{{\mathfrak p}}^*\, . \]

We have by Lemma 7.4.1 and the triangle inequality that

\[ \left| \int \sum _{{\mathfrak u}\in {\mathfrak U}_j} \sum _{{\mathfrak u}' \in {\mathfrak U}_{j'}} \sum _{{\mathfrak p}\in {\mathfrak T}_j({\mathfrak u})} \sum _{{\mathfrak p}' \in {\mathfrak T}_{j'}({\mathfrak u}')} T^*_{{\mathfrak p}} g_1 \overline{T^*_{{\mathfrak p}'} g_2} \, \mathrm{d}\mu \right| \]
\[ \le \sum _{{\mathfrak u}\in {\mathfrak U}_j} \sum _{{\mathfrak u}' \in {\mathfrak U}_{j'}} \left| \int T^*_{{\mathfrak T}_j({\mathfrak u})} (\mathbf{1}_{{\mathcal{I}}({\mathfrak u})} g_1) \overline{T^*_{{\mathfrak T}_{j'}({\mathfrak u}')} (\mathbf{1}_{{\mathcal{I}}({\mathfrak u}')} g_2)} \, \mathrm{d}\mu \right|\, . \]

By Lemma 7.4.4, this is bounded by

\begin{equation} \label{eq-S2uu'} 2^{550a^3-3n} \sum _{{\mathfrak u}\in {\mathfrak U}_j} \sum _{{\mathfrak u}' \in {\mathfrak U}_{j'}} \| S_{2,{\mathfrak u}} g_1\| _{L^2({\mathcal{I}}({\mathfrak u}')\cap {\mathcal{I}}({\mathfrak u})} \| S_{2, {\mathfrak u}'} g_2\| _{L^2({\mathcal{I}}({\mathfrak u}')\cap {\mathcal{I}}({\mathfrak u}))}\, . \end{equation}
7.7.5

We apply the Cauchy-Schwarz inequality in the form

\begin{equation*} \sum _{i \in M} a_i b_i \le (\sum _{i \in M} a_i^2 )^{1/2}(\sum _{i \in M} b_i^2 )^{1/2} \end{equation*}

to the outer two sums:

\[ \le 2^{550a^3-3n} \left(\sum _{{\mathfrak u}\in {\mathfrak U}_j} \sum _{{\mathfrak u}' \in {\mathfrak U}_{j'}} \| S_{2,{\mathfrak u}} g_1\| _{L^2({\mathcal{I}}({\mathfrak u}')\cap {\mathcal{I}}({\mathfrak u}))}^2 \right)^{1/2} \]
\[ \left(\sum _{{\mathfrak u}\in {\mathfrak U}_j} \sum _{{\mathfrak u}' \in {\mathfrak U}_{j'}} \| S_{2,{\mathfrak u}'} g_2\| _{L^2({\mathcal{I}}({\mathfrak u}')\cap {\mathcal{I}}({\mathfrak u}))}^2 \right)^{1/2}\, . \]

By pairwise disjointedness of the sets \({\mathcal{I}}({\mathfrak u})\) for \({\mathfrak u}\in {\mathfrak U}_j\) and of the sets \({\mathcal{I}}({\mathfrak u}')\) for \({\mathfrak u}' \in {\mathfrak U}_{j'}\), we have

\[ \sum _{{\mathfrak u}\in {\mathfrak U}_j}\sum _{{\mathfrak u}' \in {\mathfrak U}_{j'}} \| S_{2,{\mathfrak u}} g_1\| _{L^2({\mathcal{I}}({\mathfrak u}')\cap {\mathcal{I}}({\mathfrak u}))}^2 = \sum _{{\mathfrak u}\in {\mathfrak U}_j}\sum _{{\mathfrak u}' \in {\mathfrak U}_{j'}} \int _{{\mathcal{I}}({\mathfrak u}) \cap {\mathcal{I}}({\mathfrak u}')} |S_{2,{\mathfrak u}} g_1(y)|^2 \, \mathrm{d}\mu (y) \]
\[ \le \int _X |S_{2,{\mathfrak u}}g_1(y)|^2 \, \mathrm{d}\mu (y) = \| S_{2,{\mathfrak u}} g_1\| _2^2\, . \]

Arguing similar for \(g_2\), we can estimate 7.7.5 to be

\[ \le 2^{550a^3-3n} \| S_{2,{\mathfrak u}}g_1\| _2 \| S_{2,{\mathfrak u}'} g_2\| _2\, . \]

The lemma now follows from Lemma 7.4.3.

Define for \(1 \le j \le 2^n\)

\[ E_j := \bigcup _{{\mathfrak u}\in {\mathfrak U}_j} \bigcup _{{\mathfrak p}\in {\mathfrak T}({\mathfrak u})} E({\mathfrak p})\, . \]
Lemma 7.7.4 disjoint row support

The sets \(E_j\), \(1 \le j \le 2^n\) are pairwise disjoint.

Proof

Suppose that \({\mathfrak p}\in {\mathfrak T}({\mathfrak u})\) and \({\mathfrak p}' \in {\mathfrak T}({\mathfrak u}')\) with \({\mathfrak u}\ne {\mathfrak u}'\) and \(x \in E({\mathfrak p}) \cap E({\mathfrak p}')\). Suppose without loss of generality that \({\mathrm{s}}({\mathfrak p}) \le {\mathrm{s}}({\mathfrak p}')\). Then \(x \in {\mathcal{I}}({\mathfrak p}) \cap {\mathcal{I}}({\mathfrak p}') \subset {\mathcal{I}}({\mathfrak u}')\). By 2.0.8 it follows that \({\mathcal{I}}({\mathfrak p}) \subset {\mathcal{I}}({\mathfrak u}')\). By 2.0.36, it follows that

\[ d_{{\mathfrak p}}({\mathcal{Q}}({\mathfrak p}), {\mathcal{Q}}({\mathfrak u}')) {\gt} 2^{Z(n+1)}\, . \]

By the triangle inequality. Lemma 2.1.2 and 2.0.32 it follows that

\begin{align*} d_{{\mathfrak p}}({\mathcal{Q}}({\mathfrak p}), {\mathcal{Q}}({\mathfrak p}’)) & \ge d_{{\mathfrak p}}({\mathcal{Q}}({\mathfrak p}), {\mathcal{Q}}({\mathfrak u}’)) - d_{{\mathfrak p}}({\mathcal{Q}}({\mathfrak p}’), {\mathcal{Q}}({\mathfrak u}’))\\ & {\gt} 2^{Z(n+1)} - d_{{\mathfrak p}'}({\mathcal{Q}}({\mathfrak p}’), {\mathcal{Q}}({\mathfrak u}’))\\ & \ge 2^{Z(n+1)} - 4\, . \end{align*}

Since \(Z \ge 3\) by 2.0.3, it follows that \({\mathcal{Q}}({\mathfrak p}') \notin B_{{\mathfrak p}}({\mathcal{Q}}({\mathfrak p}), 1)\), so \(\Omega ({\mathfrak p}') \not\subset \Omega ({\mathfrak p})\) by 2.0.15. Hence, by 2.0.14, \(\Omega ({\mathfrak p}) \cap \Omega ({\mathfrak p}') = \emptyset \). But if \(x \in E({\mathfrak p}) \cap E({\mathfrak p}')\) then \(Q(x) \in \Omega ({\mathfrak p}) \cap \Omega ({\mathfrak p}')\). This is a contradiction, and the lemma follows.

Now we prove Proposition 2.0.4.

Proof of Proposition 2.0.4

To save some space, we will write

\[ T_{\mathfrak {R}_j}^* = \sum _{{\mathfrak u}\in {\mathfrak U}_j} \sum _{{\mathfrak p}\in {\mathfrak T}({\mathfrak u})} T_{{\mathfrak p}}^*\, . \]

By 7.4.1, we have for each \(j\)

\[ T_{\mathfrak {R}_j}^*g = \sum _{{\mathfrak u}\in {\mathfrak U}_j} \sum _{{\mathfrak p}\in {\mathfrak T}({\mathfrak u})} T_{{\mathfrak p}}^* g = \sum _{{\mathfrak u}\in {\mathfrak U}_j} \sum _{{\mathfrak p}\in {\mathfrak T}({\mathfrak u})} T_{{\mathfrak p}}^* \mathbf{1}_{E_j} g = T_{\mathfrak {R}_j}^* \mathbf{1}_{E_j} g\, . \]

Hence, by Lemma 7.7.1,

\[ \left\| \sum _{{\mathfrak u}\in {\mathfrak U}} \sum _{{\mathfrak p}\in {\mathfrak T}({\mathfrak u})} T^*_{{\mathfrak p}} g\right\| _2^2 = \left\| \sum _{j = 1}^{2^n} T^*_{\mathfrak {R}_{j}} g\right\| _2^2 = \left\| \sum _{j=1}^{2^n} T^*_{\mathfrak {R}_{j}} \mathbf{1}_{E_j} g\right\| _2^2 \]
\[ = \int _X \left|\sum _{j=1}^{2^n} T^*_{\mathfrak {R}_{j}} \mathbf{1}_{E_j} g\right|^2 \, \mathrm{d}\mu \]
\[ = \sum _{j=1}^{2^n} \int _X |T_{\mathfrak {R}_j}^* \mathbf{1}_{E_j} g|^2 + \sum _{j =1}^{2^n} \sum _{\substack {j’ = 1\\ j’ \ne j}}^{2^n} \int _X \overline{ T_{\mathfrak {R}_j}^* \mathbf{1}_{E_j} g} T_{\mathfrak {R}_{j'}}^* \mathbf{1}_{E_{j'}} g \, \mathrm{d}\mu \, . \]

We use Lemma 7.7.2 to estimate each term in the first sum, and Lemma 7.7.3 to bound each term in the second sum:

\[ \le 2^{312a^3-n} \sum _{j = 1}^{2^n} \| \mathbf{1}_{E_j} g\| _2^2 + 2^{862a^3-3 n}\sum _{j=1}^{2^n}\sum _{j' = 1}^{2^n} \| \mathbf{1}_{E_j} g\| _2 \| \mathbf{1}_{E_{j'}}g\| _2\, . \]

By Cauchy-Schwarz in the second two sums, this is at most

\[ 2^{862a^3} (2^{-n} + 2^{n}2^{-3 n}) \sum _{j = 1}^n \| \mathbf{1}_{E_j} g\| _2^2\, , \]

and by disjointedness of the sets \(E_j\), this is at most

\[ 2^{863a^3 - n} \| g\| _2^2\, . \]

Taking adjoints and square roots, it follows that for all \(f\)

\begin{equation} \label{eq-forest-bound-1} \left\| \sum _{{\mathfrak u}\in {\mathfrak U}} \sum _{{\mathfrak p}\in {\mathfrak T}({\mathfrak u})} T_{{\mathfrak p}} f\right\| _2 \le 2^{432a^3-\frac{n}{2}} \| f\| _2\, . \end{equation}
7.7.6

On the other hand, we have by disjointedness of the sets \(E_j\) from Lemma 7.7.4

\[ \left\| \sum _{{\mathfrak u}\in {\mathfrak U}} \sum _{{\mathfrak p}\in {\mathfrak T}({\mathfrak u})} T_{{\mathfrak p}} f\right\| _2^2 = \left\| \sum _{j=1}^{2^n} \mathbf{1}_{E_j} T_{\mathfrak {R}_{j}} f\right\| _2^2 = \sum _{j = 1}^{2^n} \| \mathbf{1}_{E_j} T_{\mathfrak {R}_{j}} f\| _2^2\, . \]

If \(|f| \le \mathbf{1}_F\) then we obtain from Lemma 7.7.2 and taking square roots that

\[ \le 2^{257a^3} \operatorname{\operatorname {dens}}_2(\bigcup _{{\mathfrak u}\in {\mathfrak U}}{\mathfrak T}({\mathfrak u}))^{\frac{1}{2}} 2^{-\frac{n}{2}} (\sum _{j = 1}^{2^n} \| f\| _2^2)^{\frac{1}{2}} \]

\begin{equation} \label{eq-forest-bound-2} = 2^{257a^3} \operatorname{\operatorname {dens}}_2(\bigcup _{{\mathfrak u}\in {\mathfrak U}}{\mathfrak T}({\mathfrak u}))^{\frac{1}{2}} \| f\| _2\, . \end{equation}
7.7.7

Proposition 2.0.4 follows by taking the product of the \((2 - \frac{2}{q})\)-th power of 7.7.6 and the \((\frac{2}{q} - 1)\)-st power of 7.7.7.