Carleson operators on doubling metric measure spaces

5 Proof of discrete Carleson

Let a grid structure \((\mathcal{D}, c, s)\) and a tile structure \(({\mathfrak P}, {\mathcal{I}}, {\Omega }, {\mathcal{Q}})\) for this grid structure be given. In Section 5.1, we decompose the set \({\mathfrak P}\) of tiles into subsets. Each subset will be controlled by one of three methods. The guiding principle of the decomposition is to be able to apply the forest estimate of Proposition 2.0.4 to the final subsets defined in 5.1.23. This application is done in Section 5.4. The miscellaneous subsets along the construction of the forests will either be thrown into exceptional sets, which are defined and controlled in Section 5.2, or will be controlled by the antichain estimate of Proposition 2.0.3, which is done in Section 5.5. Section 5.3 contains some auxiliary lemmas needed for the proofs in Subsections 5.4-5.5.

5.1 Organisation of the tiles

In the following definitions, \(k, n\), and \(j\) will be nonnegative integers. Define \(\mathcal{C}(G,k)\) to be the set of \(I\in \mathcal{D}\) such that there exists a \(J\in \mathcal{D}\) with \(I\subset J\) and

\begin{equation} \label{muhj1} {\mu (G \cap J)} {\gt} 2^{-k-1}{\mu (J)}\, , \end{equation}
5.1.1

but there does not exist a \(J\in \mathcal{D}\) with \(I\subset J\) and

\begin{equation} \label{muhj2} {\mu (G \cap J)} {\gt} 2^{-k}{\mu (J)}\, . \end{equation}
5.1.2

Let

\begin{equation} \label{eq-defPk} {\mathfrak P}(k)=\{ {\mathfrak p}\in {\mathfrak P}\ : \ {\mathcal{I}}({\mathfrak p})\in \mathcal{C}(G,k)\} \end{equation}
5.1.3

Define \( {\mathfrak {M}}(k,n)\) to be the set of \({\mathfrak p}\in {\mathfrak P}(k)\) such that

\begin{equation} \label{ebardense} \mu ({E_1}({\mathfrak p})) {\gt} 2^{-n} \mu ({\mathcal{I}}({\mathfrak p})) \end{equation}
5.1.4

and there does not exist \({\mathfrak p}'\in {\mathfrak P}(k)\) with \({\mathfrak p}'\neq {\mathfrak p}\) and \({\mathfrak p}\le {\mathfrak p}'\) such that

\begin{equation} \label{mnkmax} \mu ({E_1}({\mathfrak p}')) {\gt} 2^{-n} \mu ({\mathcal{I}}({\mathfrak p}')). \end{equation}
5.1.5

Define for a collection \({\mathfrak P}'\subset {\mathfrak P}(k)\)

\begin{equation} \label{eq-densdef} \operatorname{\operatorname {dens}}_k' ({\mathfrak P}'):= \sup _{{\mathfrak p}'\in {\mathfrak P}'}\sup _{\lambda \geq 2} \lambda ^{-a} \sup _{{\mathfrak p}\in {\mathfrak P}(k): \lambda {\mathfrak p}' \lesssim \lambda {\mathfrak p}} \frac{\mu ({E}_2(\lambda , {\mathfrak p}))}{\mu ({\mathcal{I}}({\mathfrak p}))}\, . \end{equation}
5.1.6

Sorting by density, we define

\begin{equation} \label{def-cnk} {\mathfrak C}(k,n):=\{ {\mathfrak p}\in {\mathfrak P}(k) \ : 2^{4a}2^{-n}{\lt} \operatorname{\operatorname {dens}}_k'(\{ {\mathfrak p}\} ) \le 2^{4a}2^{-n+1}\} \, . \end{equation}
5.1.7

Following Fefferman [ , we define for \({\mathfrak p}\in {\mathfrak C}(k,n)\)

\begin{equation} \label{defbfp} \mathfrak {B}({\mathfrak p}) := \{ \mathfrak {m} \in \mathfrak {M}(k,n) \ : \ 100 {\mathfrak p}\lesssim \mathfrak {m}\} \end{equation}
5.1.8

and

\begin{equation} \label{defcnkj} {\mathfrak C}_1(k,n,j) := \{ {\mathfrak p}\in {\mathfrak C}(k,n) \ : \ 2^{j} \leq |\mathfrak {B}({\mathfrak p})| {\lt} 2^{j+1}\} \, . \end{equation}
5.1.9

and

\begin{equation} \label{defl0nk} {\mathfrak L}_0(k,n) := \{ {\mathfrak p}\in {\mathfrak C}(k,n) \ : \ |\mathfrak {B}({\mathfrak p})| {\lt}1\} \, . \end{equation}
5.1.10

Together with the following removal of minimal layers, the splitting into \({\mathfrak C}_1(k,n,j)\) will lead to a separation of trees. Define recursively for \(0\le l\le Z(n+1)\)

\begin{equation} \label{eq-L1-def} {\mathfrak L}_1(k,n,j,l) \end{equation}
5.1.11

to be the set of minimal elements with respect to \(\le \) in

\begin{equation} {\mathfrak C}_1(k,n,j)\setminus \bigcup _{0\le l'{\lt}l} {\mathfrak L}_1(k,n,j,l')\, . \end{equation}
5.1.12

Define

\begin{equation} \label{eq-C2-def} {\mathfrak C}_2(k,n,j):= {\mathfrak C}_1(k,n,j)\setminus \bigcup _{0\le l'\le Z(n+1)} {\mathfrak L}_1(k,n,j,l')\, . \end{equation}
5.1.13

The remaining tile organization will be relative to prospective tree tops, which we define now. Define

\begin{equation} \label{defunkj} {\mathfrak U}_1(k,n,j) \end{equation}
5.1.14

to be the set of all \({\mathfrak u}\in {\mathfrak C}_1(k,n,j)\) such that for all \({\mathfrak p}\in {\mathfrak C}_1(k,n,j)\) with \({\mathcal{I}}({\mathfrak u})\) strictly contained in \({\mathcal{I}}({\mathfrak p})\) we have \(B_{{\mathfrak u}}({\mathcal{Q}}({\mathfrak u}), 100) \cap B_{{\mathfrak p}}({\mathcal{Q}}({\mathfrak p}),100) = \emptyset \).

We first remove the pairs that are outside the immediate reach of any of the prospective tree tops. Define

\begin{equation} \label{eq-L2-def} {\mathfrak L}_2(k,n,j) \end{equation}
5.1.15

to be the set of all \({\mathfrak p}\in {\mathfrak C}_2(k,n,j)\) such that there does not exist \({\mathfrak u}\in {\mathfrak U}_1(k,n,j)\) with \({\mathcal{I}}({\mathfrak p})\neq {\mathcal{I}}({\mathfrak u})\) and \(2{\mathfrak p}\lesssim {\mathfrak u}\). Define

\begin{equation} \label{eq-C3-def} {\mathfrak C}_3(k,n,j):={\mathfrak C}_2(k,n,j) \setminus {\mathfrak L}_2(k,n,j)\, . \end{equation}
5.1.16

We next remove the maximal layers. Define recursively for \(0 \le l \le Z(n+1)\)

\begin{equation} \label{eq-L3-def} {\mathfrak L}_3(k,n,j,l) \end{equation}
5.1.17

to be the set of all maximal elements with respect to \(\le \) in

\begin{equation} {\mathfrak C}_3(k,n,j) \setminus \bigcup _{0 \le l' {\lt} l} {\mathfrak L}_3(k,n,j,l')\, . \end{equation}
5.1.18

Define

\begin{equation} \label{eq-C4-def} {\mathfrak C}_4(k,n,j):={\mathfrak C}_3(k,n,j) \setminus \bigcup _{0 \le l \le Z(n+1)} {\mathfrak L}_3(k,n,j,l)\, . \end{equation}
5.1.19

Finally, we remove the boundary pairs relative to the prospective tree tops. Define

\begin{equation} \label{eq-L-def} \mathcal{L}({\mathfrak u}) \end{equation}
5.1.20

to be the set of all \(I \in \mathcal{D}\) with \(I \subset {\mathcal{I}}({\mathfrak u})\) and \(s(I) = {\mathrm{s}}({\mathfrak u}) - Z(n+1) - 1\) and

\begin{equation} B(c(I), 8 D^{s(I)})\not\subset {\mathcal{I}}({\mathfrak u})\, . \end{equation}
5.1.21

Define

\begin{equation} \label{eq-L4-def} {\mathfrak L}_4(k,n,j) \end{equation}
5.1.22

to be the set of all \({\mathfrak p}\in {\mathfrak C}_4(k,n,j)\) such that there exists \({\mathfrak u}\in {\mathfrak U}_1(k,n,j)\) with \({\mathcal{I}}({\mathfrak p}) \subset \bigcup \mathcal{L}({\mathfrak u})\), and define

\begin{equation} \label{defc5} {\mathfrak C}_5(k,n,j):={\mathfrak C}_4(k,n,j) \setminus {\mathfrak L}_4(k,n,j)\, . \end{equation}
5.1.23

We define three exceptional sets. The first exceptional set \(G_1\) takes into account the ratio of the measures of \(F\) and \(G\). Define \({\mathfrak P}_{F,G}\) to be the set of all \({\mathfrak p}\in {\mathfrak P}\) with

\begin{equation} \operatorname{\operatorname {dens}}_2(\{ {\mathfrak p}\} ){\gt} 2^{2a+5}\frac{\mu (F)}{\mu (G)}\, . \end{equation}
5.1.24

Define

\begin{equation} \label{definegone} G_1:=\bigcup _{{\mathfrak p}\in {\mathfrak P}_{F,G} }{\mathcal{I}}({\mathfrak p})\, . \end{equation}
5.1.25

For an integer \(\lambda \ge 0\), define \(A(\lambda ,k,n)\) to be the set of all \(x\in X\) such that

\begin{equation} \label{eq-Aoverlap-def} \sum _{{\mathfrak p}\in \mathfrak {M}(k,n)}\mathbf{1}_{{\mathcal{I}}({\mathfrak p})}(x){\gt}\lambda 2^{n+1} \end{equation}
5.1.26

and define

\begin{equation} \label{definegone2} G_2:= \bigcup _{k\ge 0}\bigcup _{k\le n} A(2n+6,k,n)\, . \end{equation}
5.1.27

Define

\begin{equation} \label{defineg3} G_3 := \bigcup _{k\ge 0}\, \bigcup _{n \geq k}\, \bigcup _{0\le j\le 2n+3} \bigcup _{{\mathfrak p}\in {\mathfrak L}_4 (k,n,j)} {\mathcal{I}}({\mathfrak p})\, . \end{equation}
5.1.28

Define \(G'=G_1\cup G_2 \cup G_3\). The following bound of the measure of \(G'\) will be proven in Section 5.2.

Lemma 5.1.1 exceptional set
#

We have

\begin{equation} \mu (G')\le 2^{-1}\mu (G)\, . \end{equation}
5.1.29

In Section 5.4, we identify each set \({\mathfrak C}_5(k,n,j)\) outside \(G'\) as forest and use Proposition 2.0.4 to prove the following lemma.

Let

\begin{equation} {\mathfrak P}_1 =\bigcup _{k\ge 0}\bigcup _{n\ge k} \bigcup _{0\le j\le 2n+3}{\mathfrak C}_5(k,n,j) \end{equation}
5.1.30

For all \(f:X\to {\mathbb {C}}\) with \(|f|\le \mathbf{1}_F\) we have

\begin{equation} \label{disclesssim1} \int _{G \setminus G'} \left|\sum _{{\mathfrak p}\in {\mathfrak P}_1} T_{{\mathfrak p}} f \right|\, \mathrm{d}\mu \le \frac{2^{435a^3}}{(q-1)^4} \mu (G)^{1 - \frac{1}{q}} \mu (F)^{\frac{1}{q}}\, . \end{equation}
5.1.31

In Section 5.5, we decompose the complement of the set of tiles in Lemma 5.1.2 and apply the antichain estimate of Proposition 2.0.3 to prove the following lemma.

Lemma 5.1.3 forest complement

Let

\begin{equation} {\mathfrak P}_2 ={\mathfrak P}\setminus {\mathfrak P}_1\, . \end{equation}
5.1.32

For all \(f:X\to {\mathbb {C}}\) with \(|f|\le \mathbf{1}_F\) we have

\begin{equation} \label{disclesssim2} \int _{G \setminus G'} \left|\sum _{{\mathfrak p}\in {\mathfrak P}_2} T_{{\mathfrak p}} f\right| \, \mathrm{d}\mu \le \frac{2^{210a^3}}{(q-1)^5} \mu (G)^{1 - \frac{1}{q}} \mu (F)^{\frac{1}{q}}\, . \end{equation}
5.1.33

Proof of Proposition 2.0.2

Proposition 2.0.2 follows by applying the triangle inequality to 2.0.22 according to the splitting in Lemma 5.1.2 and Lemma 5.1.3 and using both Lemmas as well as the bound on the set \(G'\) given by Lemma 5.1.1.

5.2 Proof of the Exceptional Sets Lemma

We prove separate bounds for \(G_1\), \(G_2\), and \(G_3\) in Lemmas 5.2.1, 5.2.6, and 5.2.10. Adding up these bounds proves Lemma 5.1.1.

The bound for \(G_1\) follows from the Vitali covering lemma, Proposition 2.0.6.

Lemma 5.2.1 first exception
#

We have

\begin{equation} \mu (G_1)\le 2^{-5}\mu (G)\, . \end{equation}
5.2.1

Proof

Let

\[ K = 2^{2a+5}\frac{\mu (F)}{\mu (G)}\, . \]

For each \({\mathfrak p}\in {\mathfrak P}_{F,G}\) pick a \(r({\mathfrak p}){\gt}4D^{{\mathrm{s}}({\mathfrak p})}\) with

\[ {\mu (F\cap B({\mathrm{c}}({\mathfrak p}),r({\mathfrak p})))}\ge K{\mu (B({\mathrm{c}}({\mathfrak p}),r({\mathfrak p})))}\, . \]

This ball exists by definition of \({\mathfrak P}_{F,G}\) and \(\operatorname{\operatorname {dens}}_2\). By applying Proposition 2.0.6 to the collection of balls

\[ \mathcal{B} = \{ B({\mathrm{c}}({\mathfrak p}),r({\mathfrak p})) \ : \ {\mathfrak p}\in {\mathfrak P}_{F,G}\} \]

and the function \(u = \mathbf{1}_F\), we obtain

\[ \mu (\bigcup \mathcal{B}) \le 2^{2a} K^{-1} \mu (F)\, . \]

We conclude with 2.0.10 and \(r({\mathfrak p}){\gt}4D^{{\mathrm{s}}({\mathfrak p})}\)

\[ \mu (G_1)= \mu (\bigcup _{{\mathfrak p}\in {\mathfrak P}_{F,G}} {\mathcal{I}}({\mathfrak p})) \le \mu (\bigcup \mathcal{B})\le 2^{2a} K^{-1} \mu (F) = 2^{-5}\mu (G)\, . \]

We turn to the bound of \(G_2\), which relies on the Dyadic Covering Lemma 5.2.2 and the John-Nirenberg Lemma 5.2.5 below.

Lemma 5.2.2 dense cover
#

For each \(k\ge 0\), the union of all dyadic cubes in \(\mathcal{C}(G,k)\) has measure at most \(2^{k+1} \mu (G)\) .

Proof

The union of dyadic cubes in \(\mathcal{C}(G,k)\) is contained the union of elements of the set \(\mathcal{M}(k)\) of all dyadic cubes \(J\) with \({\mu (G \cap J)} {\gt} 2^{-k-1}{\mu (J)}\). The union of elements in the set \(\mathcal{M}(k)\) is contained in the union of elements in the set \(\mathcal{M}^*(k)\) of maximal elements in \(\mathcal{M}(k)\) with respect to set inclusion. Hence

\begin{equation} \label{cbymstar} \mu (\bigcup \mathcal{C}(G,k))\le \mu (\bigcup \mathcal{M}^*(k))\le \sum _{J\in \mathcal{M}^*(k)}\mu (J) \end{equation}
5.2.2

Using the definition of \(\mathcal{M}(k)\) and then the pairwise disjointedness of elements in \(\mathcal{M}^*(k)\), we estimate 5.2.2 by

\begin{equation} \le 2^{k+1}\sum _{J\in \mathcal{M}^*(k)}\mu (J\cap G) \le 2^{k+1}\mu (G). \end{equation}
5.2.3

This proves the lemma.

Lemma 5.2.3 pairwise disjoint
#

If \({\mathfrak p}, {\mathfrak p}' \in {\mathfrak {M}}(k,n)\) and

\begin{equation} \label{eintersect} {E_1}({\mathfrak p})\cap {E_1}({\mathfrak p}')\neq \emptyset , \end{equation}
5.2.4

then \({\mathfrak p}={\mathfrak p}'\).

Proof

Let \({\mathfrak p},{\mathfrak p}'\) be as in the lemma. By definition of \(E_1\), we have \(E_1({\mathfrak p})\subset {\mathcal{I}}({\mathfrak p})\) and analogously for \({\mathfrak p}'\), we conclude from 5.2.4 that \({\mathcal{I}}({\mathfrak p})\cap {\mathcal{I}}({\mathfrak p}')\neq \emptyset \). Let without loss of generality \({\mathcal{I}}({\mathfrak p})\) be maximal in \(\{ {\mathcal{I}}({\mathfrak p}),{\mathcal{I}}({\mathfrak p}')\} \), then \({\mathcal{I}}({\mathfrak p}')\subset {\mathcal{I}}({\mathfrak p})\). By 5.2.4, we conclude by definition of \(E_1\) that \({\Omega }({\mathfrak p})\cap {\Omega }({\mathfrak p}')\neq \emptyset \). By 2.0.14 we conclude \({\Omega }({\mathfrak p})\subset {\Omega }({\mathfrak p}')\). It follows that \({\mathfrak p}'\le {\mathfrak p}\). By maximality 5.1.5 of \({\mathfrak p}'\), we have \({\mathfrak p}'={\mathfrak p}\). This proves the lemma.

Lemma 5.2.4 dyadic union
#

For each \(x\in A(\lambda ,k,n)\), there is a dyadic cube \(I\) that contains \(x\) and is a subset of \(A(\lambda ,k,n)\).

Proof

Fix \(k,n,\lambda ,x\) as in the lemma such that \(x\in A(\lambda ,k,n)\). Let \(\mathcal{M}\) be the set of dyadic cubes \({\mathcal{I}}({\mathfrak p})\) with \({\mathfrak p}\) in \(\mathfrak {M}(k,n)\) and \(x\in {\mathcal{I}}({\mathfrak p})\). By definition of \(A(\lambda ,k,n)\), the cardinality of \(\mathcal{M}\) is at least \(1+\lambda 2^{n+1}\). Let \(I\) be a cube of smallest scale in \(\mathcal{M}\). Then \(I\) is contained in all cubes of \(\mathcal{M}\). It follows that \(I\subset A(\lambda ,k,n)\).

Lemma 5.2.5 John Nirenberg
#

For all integers \(k,n,\lambda \ge 0\), we have

\begin{equation} \label{alambdameasure} \mu (A(\lambda ,k,n)) \le 2^{k+1-\lambda }\mu (G)\, . \end{equation}
5.2.5

Proof

Fix \(k,n\) as in the lemma and suppress notation to write \(A(\lambda )\) for \(A(\lambda ,k,n)\). We prove the lemma by induction on \(\lambda \). For \(\lambda =0\), we use that \(A(\lambda )\) by definition of \(\mathfrak {M}(k,n)\) is contained in the union of elements in \( \mathcal{C}(G,k)\). Lemma 5.2.2 then completes the base of the induction.

Now assume that the statement of Lemma 5.2.5 is proven for some integer \(\lambda \ge 0\). The set \(A(\lambda +1)\) is contained in the set \(A(\lambda )\). Let \(\mathcal{M}\) be the set of dyadic cubes which are a subset of \(A(\lambda )\). By Lemma 5.2.4, the union of \(\mathcal{M}\) is \(A(\lambda )\). Let \(\mathcal{M}^*\) be the set of maximal dyadic cubes in \(\mathcal{M}\).

Let \(x\in A(\lambda +1)\) and \(L\in \mathcal{M}^*\) such that \(x\in L\). Then by the dyadic property 2.0.8

\begin{equation} \label{suminout} \sum _{{\mathfrak p}\in {\mathfrak {M}}(k,n)} \mathbf{1}_{{\mathcal{I}}({\mathfrak p})}(x) = \sum _{{\mathfrak p}\in {\mathfrak {M}}(k,n):{\mathcal{I}}({\mathfrak p}) \subset L} \mathbf{1}_{{\mathcal{I}}({\mathfrak p})}(x) + \sum _{{\mathfrak p}\in {\mathfrak {M}}(k,n):L \subsetneq {\mathcal{I}}({\mathfrak p})} \mathbf{1}_{{\mathcal{I}}({\mathfrak p})}(x)\, . \end{equation}
5.2.6

We now show

\begin{equation} \label{mnkonl} \sum _{{\mathfrak p}\in {\mathfrak {M}}(k,n):{\mathcal{I}}({\mathfrak p}) \subset L} \mathbf{1}_{{\mathcal{I}}({\mathfrak p})}(x)\ge 2^{n+1}\, . \end{equation}
5.2.7

The left-hand side of 5.2.6 is strictly greater than \((\lambda +1)2^{n+1}\). If \(L\) is the top cube the second sum \(Q_2\) on the right-hand side of 5.2.6 is zero and 5.2.7 follows immediately. Otherwise consider the inclusion-minimal cube \(\hat{L}\) with \(L\subsetneq \hat{L}\); all tiles \({\mathfrak p}\) over which \(Q_2\) is summed over satisfy \(\hat{L}\subset {\mathfrak p}\), so \(Q_2\) is constant for all \(x\in \hat{L}\). By maximality of \(L\), \(Q_2\) is at most \(\lambda 2^{n+1}\) somewhere on \(\hat{L}\), thus on all of \(\hat{L}\) and consequently also at \(x\). Rearranging the inequality yields 5.2.7.

By Lemma 5.2.3, we have

\begin{equation} \sum _{{\mathfrak p}\in {\mathfrak {M}}(k,n):{\mathcal{I}}({\mathfrak p}) \subset L} \mu ({E_1}({\mathfrak p})) \leq \mu (L)\, . \end{equation}
5.2.8

Multiplying by \(2^n\) and applying 5.1.4, we obtain

\begin{equation} \label{mnkintl} \sum _{{\mathfrak p}\in {\mathfrak {M}}(k,n):{\mathcal{I}}({\mathfrak p}) \subset L} \mu ({\mathcal{I}}({\mathfrak p})) \leq 2^n \mu (L)\, . \end{equation}
5.2.9

We then have with 5.2.7 and 5.2.9

\begin{equation} 2^{n+1}\mu (A(\lambda +1)\cap L) = \int _{A(\lambda +1)\cap L} 2^{n+1} d\mu \end{equation}
5.2.10

\begin{equation} \le \int \sum _{{\mathfrak p}\in {\mathfrak {M}}(k,n):{\mathcal{I}}({\mathfrak p}) \subset L} \mathbf{1}_{{\mathcal{I}}({\mathfrak p})} d\mu \le 2^n \mu (L)\, . \end{equation}
5.2.11

Hence

\begin{equation} 2\mu (A(\lambda +1))=2\sum _{L\in \mathcal{M}^*} \mu (A(\lambda +1)\cap L)\le \sum _{L\in \mathcal{M}^*}\mu ( L)= \mu (A(\lambda ))\, . \end{equation}
5.2.12

Using the induction hypothesis, this proves 5.2.5 for \(\lambda +1\) and completes the proof of the lemma.

Lemma 5.2.6 second exception
#

We have

\begin{equation} \mu (G_2)\le 2^{-2} \mu (G)\, . \end{equation}
5.2.13

Proof

We use Lemma 5.2.5 and sum twice a geometric series to obtain

\begin{equation} \sum _{0\le k}\sum _{k\le n} \mu (A(2n+6,k,n))\le \sum _{0\le k}\sum _{k\le n} 2^{k-5-2n}\mu (G) \end{equation}
5.2.14

\begin{equation} \le \sum _{0\le k} 2^{-k-3}\mu (G)\le 2^{-2}\mu (G)\, . \end{equation}
5.2.15

This proves the lemma.

We turn to the set \(G_3\).

Lemma 5.2.7 top tiles
#

We have

\begin{equation} \label{eq-musum} \sum _{\mathfrak {m} \in \mathfrak {M}(k,n)} \mu ({\mathcal{I}}(\mathfrak {m}))\le 2^{n+k+3}\mu (G). \end{equation}
5.2.16

Proof

We write the left-hand side of 5.2.16

\begin{equation} \int \sum _{\mathfrak {m} \in \mathfrak {M}(k,n)} \mathbf{1}_{{\mathcal{I}}(\mathfrak {m})}(x) \, d\mu (x) \le 2^{n+1} \sum _{\lambda =0}^{|\mathfrak {M}|}\mu (A(\lambda , k,n))\, . \end{equation}
5.2.17

Using Lemma 5.2.5 and then summing a geometric series, we estimate this by

\begin{equation} \le 2^{n+1}\sum _{\lambda =0}^{|\mathfrak {M}|} 2^{k+1-\lambda }\mu (G) \le 2^{n+1}2^{k+2}\mu (G)\, . \end{equation}
5.2.18

This proves the lemma.

Lemma 5.2.8 tree count
#

Let \(k,n,j\ge 0\). We have for every \(x\in X\)

\begin{equation} \sum _{{\mathfrak u}\in {\mathfrak U}_1(k,n,j)} \mathbf{1}_{{\mathcal{I}}({\mathfrak u})}(x) \le 2^{-j} 2^{9a} \sum _{\mathfrak {m}\in \mathfrak {M}(k,n)} \mathbf{1}_{{\mathcal{I}}(\mathfrak {m})}(x) \end{equation}
5.2.19

Proof

Let \(x\in X\). For each \({\mathfrak u}\in {\mathfrak U}_1(k,n,j)\) with \(x\in {\mathcal{I}}({\mathfrak u})\), as \({\mathfrak u}\in {\mathfrak C}_1(k,n,j)\), there are at least \(2^{j}\) elements \(\mathfrak {m}\in \mathfrak {M}(k,n)\) with \(100{\mathfrak u}\lesssim \mathfrak {m}\) and in particular \(x\in {\mathcal{I}}(\mathfrak {m})\). Hence

\begin{equation} \label{ubymsum} \mathbf{1}_{{\mathcal{I}}({\mathfrak u})}(x) \le 2^{-j}\sum _{\mathfrak {m} \in \mathfrak {M}(k,n): 100{\mathfrak u}\lesssim \mathfrak {m}} \mathbf{1}_{{\mathcal{I}}(\mathfrak {m})}(x)\, . \end{equation}
5.2.20

Conversely, for each \(\mathfrak {m}\in \mathfrak {M}(k,n)\) with \(x\in {\mathcal{I}}(\mathfrak {m})\), let \({\mathfrak U}(\mathfrak {m})\) be the set of \({\mathfrak u}\in {\mathfrak U}_1(k,n,j)\) with \(x\in {\mathcal{I}}({\mathfrak u})\) and \(100{\mathfrak u}\lesssim \mathfrak {m}\). Summing 5.2.20 over \({\mathfrak u}\) and counting the pairs \(({\mathfrak u},\mathfrak {m})\) with \(100{\mathfrak u}\lesssim \mathfrak {m}\) differently gives

\begin{equation} \label{usumbymsum} \sum _{{\mathfrak u}\in {\mathfrak U}_1(k,n,j)} \mathbf{1}_{{\mathcal{I}}({\mathfrak u})}(x) \le 2^{-j}\sum _{\mathfrak {m} \in \mathfrak {M}(k,n)} \sum _{{\mathfrak u}\in {\mathfrak U}(\mathfrak {m})} \mathbf{1}_{{\mathcal{I}}(\mathfrak {m})}(x)\, . \end{equation}
5.2.21

We estimate the number of elements in \({\mathfrak U}(\mathfrak {m})\). Let \({\mathfrak u}\in {\mathfrak U}(\mathfrak {m})\). Then by definition of \({\mathfrak U}(\mathfrak {m})\)

\begin{equation} \label{dby2} d_{{\mathfrak u}}({\mathcal{Q}}({\mathfrak u}),{\mathcal{Q}}(\mathfrak {m}))\le 100\, . \end{equation}
5.2.22

If \({\mathfrak u}'\) is a further element in \({\mathfrak U}(\mathfrak {m})\) with \({\mathfrak u}\neq {\mathfrak u}'\), then

\begin{equation} {\mathcal{Q}}(\mathfrak {m}) \in B_{{\mathfrak u}}({\mathcal{Q}}({\mathfrak u}),100)\cap B_{{\mathfrak u}'}({\mathcal{Q}}({\mathfrak u}'),100)\ . \end{equation}
5.2.23

By the last display and definition of \({\mathfrak U}_1(k,n,j)\), none of \({\mathcal{I}}({\mathfrak u})\), \({\mathcal{I}}({\mathfrak u}')\) is strictly contained in the other. As both contain \(x\), we have \({\mathcal{I}}({\mathfrak u})={\mathcal{I}}({\mathfrak u}')\). We then have \(d_{{\mathfrak u}}=d_{{\mathfrak u}'}\).

By 2.0.15, the balls \(B_{{\mathfrak u}}({\mathcal{Q}}({\mathfrak u}),0.2)\) and \(B_{{\mathfrak u}}({\mathcal{Q}}({\mathfrak u}'),0.2)\) are contained respectively in \({\Omega }({\mathfrak u})\) and \({\Omega }({\mathfrak u}')\) and thus are disjoint by 2.0.13. By 5.2.22 and the triangle inequality, both balls are contained in \(B_{{\mathfrak u}}({\mathcal{Q}}(\mathfrak {m}), 100.2)\).

By 1.0.11 applied nine times, there is a collection of at most \(2^{9a}\) balls of radius \(0.2\) with respect to the metric \(d_{{\mathfrak u}}\) which cover the ball \(B_{{\mathfrak u}}({\mathcal{Q}}(\mathfrak {m}),100.2)\). Let \(B'\) be a ball in this cover. As the center of \(B'\) can be in at most one of the disjoint balls \(B_{{\mathfrak u}}({\mathcal{Q}}({\mathfrak u}),0.2)\) and \(B_{{\mathfrak u}}({\mathcal{Q}}({\mathfrak u}'),0.2)\), the ball \(B'\) can contain at most one of the points \({\mathcal{Q}}({\mathfrak u})\), \({\mathcal{Q}}({\mathfrak u}')\).

Hence the image of \({\mathfrak U}(\mathfrak {m})\) under \({\mathcal{Q}}\) has at most \(2^{9a}\) elements; since \({\mathcal{Q}}\) is injective on \({\mathfrak U}(\mathfrak {m})\), the same is true of \({\mathfrak U}(\mathfrak {m})\). Inserting this into 5.2.21 proves the lemma.

Lemma 5.2.9 boundary exception
#

Let \(\mathcal{L}({\mathfrak u})\) be as defined in 5.1.20. We have for each \({\mathfrak u}\in {\mathfrak U}_1(k,n,l)\),

\begin{equation} \mu (\bigcup _{I\in \mathcal{L}({\mathfrak u})} I) \le D^{1-\kappa Z(n+1)} \mu ({\mathcal{I}}(\mathfrak {u})). \end{equation}
5.2.24

Proof

Let \({\mathfrak u}\in {\mathfrak U}_1(k,n,l)\). Let \(I \in \mathcal{L}({\mathfrak u})\). Then we have \(s(I) = {\mathrm{s}}({\mathfrak u}) - Z(n+1) - 1\) and \(I \subset {\mathcal{I}}({\mathfrak u})\) and \(B(c(I), 8D^{s(I)}) \not\subset {\mathcal{I}}({\mathfrak u})\). By 2.0.10, the set \(I\) is contained in \(B(c(I), 4D^{s(I)})\). By the triangle inequality, the set \(I\) is contained in

\begin{equation} X({\mathfrak u}):=\{ x \in {\mathcal{I}}({\mathfrak u}) \, : \, \rho (x, X \setminus {\mathcal{I}}({\mathfrak u})) \leq 12 D^{{\mathrm{s}}({\mathfrak u}) - Z(n+1)-1}\} \, . \end{equation}
5.2.25

By the small boundary property 2.0.11, noting that

\begin{equation*} 12D^{{\mathrm{s}}({\mathfrak u}) - Z(n+1) - 1} = 12D^{s(I)} {\gt} D^{-S}\ , \end{equation*}

we have

\[ \mu (X({\mathfrak u})) \le 2\cdot (12 D^{-Z(n+1)-1})^\kappa \mu ({\mathcal{I}}(\mathfrak {u})). \]

Using \(\kappa {\lt}1\) and \(D \ge 12\), this proves the lemma.

Lemma 5.2.10 third exception
#

We have

\begin{equation} \mu (G_3)\le 2^{-4} \mu (G)\, . \end{equation}
5.2.26

Proof

As each \({\mathfrak p}\in {\mathfrak L}_4(k,n,j)\) is contained in \(\cup \mathcal{L}({\mathfrak u})\) for some \({\mathfrak u}\in {\mathfrak U}_1(k,n,l)\), we have

\begin{equation} \mu (\bigcup _{{\mathfrak p}\in {\mathfrak L}_4 (k,n,j)}{\mathcal{I}}({\mathfrak p})) \le \sum _{{\mathfrak u}\in {\mathfrak U}_1(k,n,j)} \mu (\bigcup _{I \in \mathcal{L} ({\mathfrak u})}I). \end{equation}
5.2.27

Using Lemma 5.2.9 and then Lemma 5.2.8, we estimate this further by

\begin{equation} \le \sum _{{\mathfrak u}\in {\mathfrak U}_1(k,n,j)} D^{1-\kappa Z(n+1)} \mu ({\mathcal{I}}(\mathfrak {u})) \end{equation}
5.2.28

\begin{equation} \le 2^{100a^2+9a+1-j} \sum _{\mathfrak {m}\in \mathfrak {M}(k,n)} D^{-\kappa Z(n+1)} \mu ({\mathcal{I}}(\mathfrak {m}))\, . \end{equation}
5.2.29

Using Lemma 5.2.7, we estimate this by

\begin{equation} \le 2^{100a^2 + 9a + 1-j} D^{-\kappa Z(n+1)} 2^{n+k+3}\mu (G)\, . \end{equation}
5.2.30

Now we estimate \(G_3\) defined in 5.1.28 by

\begin{equation} \mu (G_3)\le \sum _{k\ge 0}\, \sum _{n \geq k}\, \sum _{0\le j\le 2n+3} \mu (\bigcup _{{\mathfrak p}\in {\mathfrak L}_4 (k,n,j)} {\mathcal{I}}({\mathfrak p})) \end{equation}
5.2.31

\begin{equation} \le \sum _{k\ge 0}\, \sum _{n \geq k}\, \sum _{0\le j\le 2n+3} 2^{100a^2 + 9a + 3 + n + k -j} D^{-\kappa Z(n+1)}\mu (G) \end{equation}
5.2.32

Summing geometric series, using that \(D^{\kappa Z}\ge 8\) by 2.0.1, 2.0.2 and 2.0.3, we estimate this by

\begin{equation} \le \sum _{k\ge 0}\, \sum _{n \geq k}\, 2^{100a^2 + 9a + 4 + n + k} D^{-\kappa Z(n+1)}\mu (G) \end{equation}
5.2.33

\begin{equation} = \sum _{k\ge 0} 2^{100a^2 + 9a + 4 + 2k} D^{-\kappa Z(k+1)} \sum _{n \geq k}\, 2^{n - k} D^{-\kappa Z(n-k)}\mu (G) \end{equation}
5.2.34

\begin{equation} \le \sum _{k\ge 0} 2^{100a^2 + 9a + 5 + 2k} D^{-\kappa Z(k+1)}\mu (G) \end{equation}
5.2.35

\begin{equation} \le 2^{100a^2 + 9a + 6} D^{-\kappa Z}\mu (G) \end{equation}
5.2.36

Using \(D = 2^{100a^2}\) and \(a \ge 4\) and \(\kappa Z \ge 2\) by 2.0.1 and 2.0.2 proves the lemma.

Proof of Lemma 5.1.1

Adding up the bounds in Lemmas 5.2.1, 5.2.6, and 5.2.10 proves Lemma 5.1.1.

5.3 Auxiliary lemmas

Before proving Lemma 5.1.2 and Lemma 5.1.3, we collect some useful properties of \(\lesssim \).

Lemma 5.3.1 wiggle order 1
#

If \(n{\mathfrak p}\lesssim m{\mathfrak p}'\) and \(n' \ge n\) and \(m \ge m'\) then \(n'{\mathfrak p}\lesssim m'{\mathfrak p}'\).

Proof

This follows immediately from the definition 2.0.24 of \(\lesssim \) and the two inclusions \(B_{{\mathfrak p}}({\mathcal{Q}}({\mathfrak p}), n) \subset B_{{\mathfrak p}}({\mathcal{Q}}({\mathfrak p}), n')\) and \(B_{{\mathfrak p}'}({\mathcal{Q}}({\mathfrak p}'), m') \subset B_{{\mathfrak p}'}({\mathcal{Q}}({\mathfrak p}'), m)\).

Lemma 5.3.2 wiggle order 2
#

Let \(n, m \ge 1\) and \(k {\gt} 0\). If \({\mathfrak p}, {\mathfrak p}' \in {\mathfrak P}\) with \({\mathcal{I}}({\mathfrak p}) \ne {\mathcal{I}}({\mathfrak p}')\) and

\begin{equation} \label{eq-wiggle1} n {\mathfrak p}\lesssim k {\mathfrak p}' \end{equation}
5.3.1

then

\begin{equation} \label{eq-wiggle2} (n + 2^{-95 a} m) {\mathfrak p}\lesssim m{\mathfrak p}'\, . \end{equation}
5.3.2

Proof

The assumption 5.3.1 together with the definition 2.0.24 of \(\lesssim \) implies that \({\mathcal{I}}({\mathfrak p}) \subsetneq {\mathcal{I}}({\mathfrak p}')\). Let \({\vartheta }\in B_{{\mathfrak p}'}({\mathcal{Q}}({\mathfrak p}'), m)\). Then we have by the triangle inequality

\[ d_{{\mathfrak p}}({\mathcal{Q}}({\mathfrak p}), {\vartheta }) \le d_{{\mathfrak p}}({\mathcal{Q}}({\mathfrak p}), {\mathcal{Q}}({\mathfrak p}')) + d_{{\mathfrak p}}({\mathcal{Q}}({\mathfrak p}'), {\vartheta }) \]

The first summand is bounded by \(n\) since

\[ {\mathcal{Q}}({\mathfrak p}') \in B_{{\mathfrak p}'}({\mathcal{Q}}({\mathfrak p}'), k) \subset B_{{\mathfrak p}}({\mathcal{Q}}({\mathfrak p}), n), \]

using 2.0.24. For the second summand we use Lemma 2.1.2 to show that the sum is estimated by

\[ n + 2^{-95a} d_{{\mathfrak p}'}({\mathcal{Q}}({\mathfrak p}'), {\vartheta }) {\lt} n + 2^{-95a} m\, . \]

Thus \(B_{{\mathfrak p}'}({\mathcal{Q}}({\mathfrak p}'),m) \subset B_{{\mathfrak p}}({\mathcal{Q}}({\mathfrak p}),n + 2^{-95a}m)\). Combined with \({\mathcal{I}}({\mathfrak p}) \subset {\mathcal{I}}({\mathfrak p}')\), this yields 5.3.2.

Lemma 5.3.3 wiggle order 3

The following implications hold for all \({\mathfrak q}, {\mathfrak q}' \in {\mathfrak P}\):

\begin{equation} \label{eq-sc1} {\mathfrak q}\le {\mathfrak q}' \ \text{and} \ \lambda \ge 1.1 \implies \lambda {\mathfrak q}\lesssim \lambda {\mathfrak q}'\, , \end{equation}
5.3.3

\begin{equation} \label{eq-sc2} 10{\mathfrak q}\lesssim {\mathfrak q}' \ \text{and} \ {\mathcal{I}}({\mathfrak q}) \ne {\mathcal{I}}({\mathfrak q}') \implies 100 {\mathfrak q}\lesssim 100 {\mathfrak q}'\, , \end{equation}
5.3.4

\begin{equation} \label{eq-sc3} 2{\mathfrak q}\lesssim {\mathfrak q}' \ \text{and} \ {\mathcal{I}}({\mathfrak q}) \ne {\mathcal{I}}({\mathfrak q}') \implies 4 {\mathfrak q}\lesssim 500 {\mathfrak q}'\, . \end{equation}
5.3.5

Proof

5.3.4 and 5.3.5 are easy consequences of Lemma 5.3.1, Lemma 5.3.2 and the fact that \(a \ge 4\). For 5.3.3, if \({\mathcal{I}}({\mathfrak q}) = {\mathcal{I}}({\mathfrak q}')\) then we get \({\mathfrak q}= {\mathfrak q}'\) by 2.0.13 and 2.0.23. If \({\mathcal{I}}({\mathfrak q}) \ne {\mathcal{I}}({\mathfrak q}')\), then from 2.0.23, 2.0.24 and 2.0.15 it follows that \({\mathfrak q}\lesssim 0.2{\mathfrak q}'\), and 5.3.3 follows from an easy calculation using Lemma 5.3.2.

We call a collection \(\mathfrak {A}\) of tiles convex if

\begin{equation} \label{eq-convexity} {\mathfrak p}\le {\mathfrak p}' \le {\mathfrak p}'' \ \text{and} \ {\mathfrak p}, {\mathfrak p}'' \in \mathfrak {A} \implies {\mathfrak p}' \in \mathfrak {A}\, . \end{equation}
5.3.6

Lemma 5.3.4 P convex
#

For each \(k\), the collection \({\mathfrak P}(k)\) is convex.

Proof

Suppose that \({\mathfrak p}\le {\mathfrak p}' \le {\mathfrak p}''\) and \({\mathfrak p}, {\mathfrak p}'' \in {\mathfrak P}(k)\). By 5.1.3 we have \({\mathcal{I}}({\mathfrak p}), {\mathcal{I}}({\mathfrak p}'') \in \mathcal{C}(G,k)\), so there exists by 5.1.1 some \(J \in \mathcal{D}\) with

\[ {\mathcal{I}}({\mathfrak p}') \subset {\mathcal{I}}({\mathfrak p}'') \subset J \]

and \(\mu (G \cap J) {\gt} 2^{-k-1} \mu (J)\). Thus 5.1.1 holds for \({\mathcal{I}}({\mathfrak p}')\). On the other hand, by 5.1.2, there exists no \(J \in \mathcal{D}\) with \({\mathcal{I}}({\mathfrak p}) \subset J\) and \(\mu (G \cap J) {\gt} 2^{-k} \mu (J)\). Since \({\mathcal{I}}({\mathfrak p}) \subset {\mathcal{I}}({\mathfrak p}')\), this implies that 5.1.2 holds for \({\mathcal{I}}({\mathfrak p}')\). Hence \({\mathcal{I}}({\mathfrak p}') \in \mathcal{C}(G,k)\), and therefore by 5.1.3 \({\mathfrak p}' \in {\mathfrak P}(k)\).

Lemma 5.3.5 C convex
#

For each \(k,n\), the collection \({\mathfrak C}(k,n)\) is convex.

Proof

Let \({\mathfrak p}\le {\mathfrak p}' \le {\mathfrak p}''\) with \({\mathfrak p}, {\mathfrak p}'' \in {\mathfrak C}(k,n)\). Then, in particular, \({\mathfrak p}, {\mathfrak p}'' \in {\mathfrak P}(k)\), so, by Lemma 5.3.4, \({\mathfrak p}' \in {\mathfrak P}(k)\). Next, we show that if \({\mathfrak q}\le {\mathfrak q}' \in {\mathfrak P}(k)\) then \(\operatorname{\operatorname {dens}}'_k(\{ {\mathfrak q}\} ) \ge \operatorname{\operatorname {dens}}_k'(\{ {\mathfrak q}'\} )\). If \({\mathfrak p}\in {\mathfrak P}(k)\) and \(\lambda \ge 2\) with \(\lambda {\mathfrak q}' \lesssim \lambda {\mathfrak p}\), then it follows from \({\mathfrak q}\le {\mathfrak q}'\), 5.3.3 of Lemma 5.3.3 and transitivity of \(\lesssim \) that \(\lambda {\mathfrak q}\lesssim \lambda {\mathfrak p}\). Thus the supremum in the definition 5.1.6 of \(\operatorname{\operatorname {dens}}_k'(\{ {\mathfrak q}\} )\) is over a superset of the set the supremum in the definition of \(\operatorname{\operatorname {dens}}_k'(\{ {\mathfrak q}'\} )\) is taken over, which shows \(\operatorname{\operatorname {dens}}'_k(\{ {\mathfrak q}\} ) \ge \operatorname{\operatorname {dens}}_k'(\{ {\mathfrak q}'\} )\). From \({\mathfrak p}' \le {\mathfrak p}''\), \({\mathfrak p}'' \in {\mathfrak C}(k,n)\) and 5.1.7 it then follows that

\[ 2^{4a}2^{-n} {\lt} \operatorname{\operatorname {dens}}_k'(\{ {\mathfrak p}''\} ) \le \operatorname{\operatorname {dens}}_k'(\{ {\mathfrak p}'\} )\, . \]

Similarly, it follows from \({\mathfrak p}\le {\mathfrak p}'\), \({\mathfrak p}\in {\mathfrak C}(k,n)\) and 5.1.7 that

\[ \operatorname{\operatorname {dens}}_k'(\{ {\mathfrak p}'\} ) \le \operatorname{\operatorname {dens}}_k'(\{ {\mathfrak p}\} ) \le 2^{4a}2^{-n+1}\, . \]

Thus \({\mathfrak p}' \in {\mathfrak C}(k,n)\).

Lemma 5.3.6 C1 convex
#

For each \(k,n,j\), the collection \({\mathfrak C}_1(k,n,j)\) is convex.

Proof

Let \({\mathfrak p}\le {\mathfrak p}'\le {\mathfrak p}''\) with \({\mathfrak p}, {\mathfrak p}'' \in {\mathfrak C}_1(k,n,j)\). By Lemma 5.3.5 and the inclusion \({\mathfrak C}_1(k,n,j) \subset {\mathfrak C}(k,n)\), which holds by definition 5.1.9, we have \({\mathfrak p}' \in {\mathfrak C}(k,n)\). By 5.3.3 and transitivity of \(\lesssim \) we have that \({\mathfrak q}\le {\mathfrak q}'\) and \(100 {\mathfrak q}' \lesssim \mathfrak {m}\) imply \(100 {\mathfrak q}\lesssim \mathfrak {m}\). So, by 5.1.8, \(\mathfrak {B}({\mathfrak p}'') \subset \mathfrak {B}({\mathfrak p}') \subset \mathfrak {B}({\mathfrak p})\). Consequently, by 5.1.9

\[ 2^j \le |\mathfrak {B}({\mathfrak p}'')|\le |\mathfrak {B}({\mathfrak p}')| \le |\mathfrak {B}({\mathfrak p})| {\lt} 2^{j+1}\, , \]

thus \({\mathfrak p}' \in {\mathfrak C}_1(k,n,j)\).

Lemma 5.3.7 C2 convex
#

For each \(k,n,j\), the collection \({\mathfrak C}_2(k,n,j)\) is convex.

Proof

Let \({\mathfrak p}\le {\mathfrak p}' \le {\mathfrak p}''\) with \({\mathfrak p}, {\mathfrak p}'' \in {\mathfrak C}_2(k,n,j)\). By 5.1.13, we have

\begin{equation*} {\mathfrak C}_2(k,n,j) \subset {\mathfrak C}_1(k,n,j)\ . \end{equation*}

Combined with Lemma 5.3.6, it follows that \({\mathfrak p}' \in {\mathfrak C}_1(k,n,j)\). If \({\mathfrak p}={\mathfrak p}'\) the statement is trivially true, otherwise suppose that \({\mathfrak p}' \notin {\mathfrak C}_2(k,n,j)\). By 5.1.13, this implies that there exists \(0 \le l' \le Z(n+1)\) with \({\mathfrak p}' \in {\mathfrak L}_1(k,n,j,l')\). By the definition 5.1.11 of \({\mathfrak L}_1(k,n,j,l')\), this implies that \({\mathfrak p}'\) is minimal with respect to \(\le \) in \({\mathfrak C}_1(k,n,j) \setminus \bigcup _{l {\lt} l'} {\mathfrak L}_1(k,n,j,l)\). Since \({\mathfrak p}\le {\mathfrak p}'\) and \({\mathfrak p}\in {\mathfrak C}_2(k,n,j)\), \({\mathfrak p}={\mathfrak p}'\), a contradiction.

Lemma 5.3.8 C3 convex
#

For each \(k,n,j\), the collection \({\mathfrak C}_3(k,n,j)\) is convex.

Proof

Let \({\mathfrak p}\le {\mathfrak p}' \le {\mathfrak p}''\) with \({\mathfrak p}, {\mathfrak p}'' \in {\mathfrak C}_3(k,n,j)\). By 5.1.16 and Lemma 5.3.7 it follows that \({\mathfrak p}' \in {\mathfrak C}_2(k,n,j)\). By 5.1.16 and 5.1.15, there exists \({\mathfrak u}\in {\mathfrak U}_1(k,n,j)\) with \(2{\mathfrak p}'' \lesssim {\mathfrak u}\) and \({\mathcal{I}}({\mathfrak p}'') \subsetneq {\mathcal{I}}({\mathfrak u})\). From \({\mathfrak p}' \le {\mathfrak p}''\), 5.3.3 and transitivity of \(\lesssim \) we then have \(2{\mathfrak p}' \lesssim {\mathfrak u}\) and \({\mathcal{I}}({\mathfrak p}') \subsetneq {\mathcal{I}}({\mathfrak u})\), so \({\mathfrak p}' \in {\mathfrak C}_3(k,n,j)\).

Lemma 5.3.9 C4 convex
#

For each \(k,n,j\), the collection \({\mathfrak C}_4(k,n,j)\) is convex.

Proof

The proof is entirely analogous to Lemma 5.3.7, substituting \({\mathfrak C}_4\) for \({\mathfrak C}_2\), \({\mathfrak C}_3\) for \({\mathfrak C}_1\) and \({\mathfrak p}'\le {\mathfrak p}''\) for \({\mathfrak p}\le {\mathfrak p}'\).

Lemma 5.3.10 C5 convex
#

For each \(k,n,j\), the collection \({\mathfrak C}_5(k,n,j)\) is convex.

Proof

Let \({\mathfrak p}\le {\mathfrak p}' \le {\mathfrak p}''\) with \({\mathfrak p}, {\mathfrak p}'' \in {\mathfrak C}_5(k,n,j)\). Then \({\mathfrak p}, {\mathfrak p}'' \in {\mathfrak C}_4(k,n,j)\) by 5.1.23, and thus by Lemma 5.3.9 \({\mathfrak p}' \in {\mathfrak C}_4(k,n,j)\). It suffices to show that if \({\mathfrak p}' \in {\mathfrak L}_4(k,n,j)\) then \({\mathfrak p}\in {\mathfrak L}_4(k,n,j)\) by contraposition; this is true by 5.1.22 and \({\mathfrak p}\le {\mathfrak p}'\).

Lemma 5.3.11 dens compare
#

We have for every \(k\ge 0\) and \({\mathfrak P}'\subset {\mathfrak P}(k)\)

\begin{equation} \operatorname{\operatorname {dens}}_1({\mathfrak P}')\le \operatorname{\operatorname {dens}}_k'({\mathfrak P}')\, . \end{equation}
5.3.7

Proof

It suffices to show that for all \({\mathfrak p}'\in {\mathfrak P}'\) and \(\lambda \ge 2\) and \({\mathfrak p}\in {\mathfrak P}({\mathfrak P}')\) with \(\lambda {\mathfrak p}' \lesssim \lambda {\mathfrak p}\) we have

\begin{equation} \frac{\mu ({E}_2(\lambda , {\mathfrak p}))}{\mu ({\mathcal{I}}({\mathfrak p}))} \le \sup _{{\mathfrak p}'' \in {\mathfrak P}(k): \lambda {\mathfrak p}' \lesssim \lambda {\mathfrak p}''} \frac{\mu ({E}_2(\lambda , {\mathfrak p}''))}{\mu ({\mathcal{I}}({\mathfrak p}''))}. \end{equation}
5.3.8

Let such \({\mathfrak p}'\), \(\lambda \), \({\mathfrak p}\) be given. It suffices to show that \({\mathfrak p}\in {\mathfrak P}(k)\), that is, it satisfies 5.1.1 and 5.1.2.

We show 5.1.1. As \({\mathfrak p}\in {\mathfrak P}({\mathfrak P}')\), there exists \({\mathfrak p}''\in {\mathfrak P}'\) with \({\mathcal{I}}({\mathfrak p}')\subset {\mathcal{I}}({\mathfrak p}'')\). By assumption on \({\mathfrak P}'\), we have \({\mathfrak p}''\in {\mathfrak P}(k)\) and there exists \(J\in \mathcal{D}\) with \({\mathcal{I}}({\mathfrak p}'')\subset J\) and

\begin{equation} \mu (G\cap J){\gt}2^{-k-1} \mu (J). \end{equation}
5.3.9

Then also \({\mathcal{I}}({\mathfrak p}')\subset J\), which proves 5.1.1 for \({\mathfrak p}\).

We show 5.1.2. Assume to get a contradiction that there exists \(J\in \mathcal{D}\) with \({\mathcal{I}}({\mathfrak p})\subset J\) and

\begin{equation} \label{mugj} \mu (G\cap J){\gt}2^{-k} \mu (J). \end{equation}
5.3.10

As \(\lambda {\mathfrak p}'\lesssim \lambda {\mathfrak p}\), we have \({\mathcal{I}}({\mathfrak p}')\subset {\mathcal{I}}({\mathfrak p})\), and therefore \({\mathcal{I}}({\mathfrak p}')\subset J\). This contradicts \({\mathfrak p}'\in {\mathfrak P}'\subset {\mathfrak P}(k)\). This proves 5.1.2 for \({\mathfrak p}\).

Lemma 5.3.12 C dens1
#

For each set \(\mathfrak {A} \subset \mathfrak {C}(k,n)\), we have

\[ \operatorname{\operatorname {dens}}_1(\mathfrak {A}) \le 2^{4a}2^{-n+1}\, . \]
Proof

We have by Lemma 5.3.11 that \(\operatorname{\operatorname {dens}}_1(\mathfrak {A}) \le \operatorname{\operatorname {dens}}_k'(\mathfrak {A})\). Since \(\mathfrak {A} \subset {\mathfrak C}(k,n)\), it follows from monotonicity of suprema and the definition 5.1.6 that \( \operatorname{\operatorname {dens}}_k'(\mathfrak {A}) \le \operatorname{\operatorname {dens}}_k'({\mathfrak C}(k,n))\, . \) By 5.1.6 and 5.1.7, we have

\[ \operatorname{\operatorname {dens}}_k'({\mathfrak C}(k,n)) = \sup _{{\mathfrak p}\in {\mathfrak C}(k,n)} \operatorname{\operatorname {dens}}_k'(\{ {\mathfrak p}\} ) \le 2^{4a}2^{-n+1}\, . \]

5.4 Proof of the Forest Union Lemma

Fix \(k,n,j\ge 0\). Define

\[ {\mathfrak C}_6(k,n,j) \]

to be the set of all tiles \({\mathfrak p}\in {\mathfrak C}_5(k,n,j)\) such that \({\mathcal{I}}({\mathfrak p}) \not\subset G'\). The following chain of lemmas establishes that the set \({\mathfrak C}_6(k,n,j)\) can be written as a union of a small number of \(n\)-forests.

For \({\mathfrak u}\in {\mathfrak U}_1(k,n,j)\), define

\begin{equation} \label{eq-T1-def} \mathfrak {T}_1({\mathfrak u}):= \{ {\mathfrak p}\in {\mathfrak C}_1(k,n,j) \ : {\mathcal{I}}({\mathfrak p})\neq {\mathcal{I}}({\mathfrak u}), \ 2{\mathfrak p}\lesssim {\mathfrak u}\} \, . \end{equation}
5.4.1

Define

\begin{equation} \label{eq-U2-def} {\mathfrak U}_2(k,n,j) := \{ {\mathfrak u}\in {\mathfrak U}_1(k,n,j) \, : \, \mathfrak {T}_1({\mathfrak u}) \cap {\mathfrak C}_6(k,n,j) \ne \emptyset \} \, . \end{equation}
5.4.2

Define a relation \(\sim \) on \({\mathfrak U}_2(k,n,j)\) by setting \({\mathfrak u}\sim {\mathfrak u}'\) for \({\mathfrak u},{\mathfrak u}'\in {\mathfrak U}_2(k,n,j)\) if \({\mathfrak u}={\mathfrak u}'\) or there exists \({\mathfrak p}\) in \(\mathfrak {T}_1({\mathfrak u})\) with \(10 {\mathfrak p}\lesssim {\mathfrak u}'\).

Lemma 5.4.1 relation geometry
#

If \({\mathfrak u}\sim {\mathfrak u}'\), then \({\mathcal{I}}(u) = {\mathcal{I}}(u')\) and

\begin{equation*} B_{{\mathfrak u}}({\mathcal{Q}}({\mathfrak u}), 100) \cap B_{{\mathfrak u}'}({\mathcal{Q}}({\mathfrak u}’), 100) \neq \emptyset \ . \end{equation*}
Proof

Let \({\mathfrak u}, {\mathfrak u}' \in {\mathfrak U}_2(k,n,j)\) with \({\mathfrak u}\sim {\mathfrak u}'\). If \({\mathfrak u}= {\mathfrak u}'\) then the conclusion of the Lemma clearly holds. Else, there exists \({\mathfrak p}\in {\mathfrak C}_1(k,n,j)\) such that \({\mathcal{I}}({\mathfrak p}) \ne {\mathcal{I}}({\mathfrak u})\) and \(2 {\mathfrak p}\lesssim {\mathfrak u}\) and \(10 {\mathfrak p}\lesssim {\mathfrak u}'\). Using Lemma 5.3.1 and 5.3.4 of Lemma 5.3.3, we deduce that

\begin{equation} \label{eq-Fefferman-trick0} 100 {\mathfrak p}\lesssim 100 {\mathfrak u}\, , \qquad 100 {\mathfrak p}\lesssim 100{\mathfrak u}'\, . \end{equation}
5.4.3

Now suppose that \(B_{{\mathfrak u}}({\mathcal{Q}}({\mathfrak u}), 100) \cap B_{{\mathfrak u}'}({\mathcal{Q}}({\mathfrak u}'), 100) = \emptyset \). Then we have \(\mathfrak {B}({\mathfrak u}) \cap \mathfrak {B}({\mathfrak u}') = \emptyset \), by the definition 5.1.8 of \(\mathfrak {B}\) and the definition 2.0.24 of \(\lesssim \), but also \(\mathfrak {B}({\mathfrak u}) \subset \mathfrak {B}({\mathfrak p})\) and \(\mathfrak {B}({\mathfrak u}') \subset \mathfrak {B}({\mathfrak p})\), by 5.1.8, 2.0.24 and 5.4.3. Hence,

\[ |\mathfrak {B}({\mathfrak p})| \geq |\mathfrak {B}({\mathfrak u})| + |\mathfrak {B}({\mathfrak u}')| \geq 2^{j} + 2^j = 2^{j+1}\, , \]

which contradicts \({\mathfrak p}\in {\mathfrak C}_1(k,n,j)\). Therefore we must have

\begin{equation*} B_{{\mathfrak u}}({\mathcal{Q}}({\mathfrak u}), 100) \cap B_{{\mathfrak u}'}({\mathcal{Q}}({\mathfrak u}’), 100) \ne \emptyset \, . \end{equation*}

It follows from \(2{\mathfrak p}\lesssim {\mathfrak u}\) and \(10{\mathfrak p}\lesssim {\mathfrak u}'\) that \({\mathcal{I}}({\mathfrak p}) \subset {\mathcal{I}}({\mathfrak u})\) and \({\mathcal{I}}({\mathfrak p}) \subset {\mathcal{I}}({\mathfrak u}')\). By 2.0.8, it follows that \({\mathcal{I}}({\mathfrak u})\) and \({\mathcal{I}}({\mathfrak u}')\) are nested. Combining this with the conclusion of the last paragraph and definition 5.1.14 of \({\mathfrak U}_1(k,n,j)\), we obtain that \({\mathcal{I}}({\mathfrak u}) = {\mathcal{I}}({\mathfrak u}')\).

Lemma 5.4.2 equivalence relation
#

For each \(k,n,j\), the relation \(\sim \) on \({\mathfrak U}_2(k,n,j)\) is an equivalence relation.

Proof

Reflexivity holds by definition. For transitivity, suppose that

\begin{equation*} {\mathfrak u}, {\mathfrak u}’, {\mathfrak u}” \in {\mathfrak U}_1(k,n,j) \end{equation*}

and \({\mathfrak u}\sim {\mathfrak u}'\), \({\mathfrak u}' \sim {\mathfrak u}''\). By Lemma 5.4.1, it follows that \({\mathcal{I}}({\mathfrak u}) ={\mathcal{I}}({\mathfrak u}') = {\mathcal{I}}({\mathfrak u}'')\), that there exists

\begin{equation*} {\vartheta }\in B_{{\mathfrak u}}({\mathcal{Q}}({\mathfrak u}), 100) \cap B_{{\mathfrak u}'}({\mathcal{Q}}({\mathfrak u}’), 100) \end{equation*}

and that there exists

\begin{equation*} {\theta }\in B_{{\mathfrak u}'}({\mathcal{Q}}({\mathfrak u}’), 100) \cap B_{{\mathfrak u}''}({\mathcal{Q}}({\mathfrak u}”), 100)\, . \end{equation*}

If \({\mathfrak u}= {\mathfrak u}'\), then \({\mathfrak u}\sim {\mathfrak u}''\) holds by assumption. Else, there exists by the definition of \(\sim \) some \({\mathfrak p}\in \mathfrak {T}_1({\mathfrak u})\) with \(10{\mathfrak p}\lesssim {\mathfrak u}'\). Then we have \(2{\mathfrak p}\lesssim {\mathfrak u}\) and \({\mathfrak p}\ne {\mathfrak u}\) by definition of \(\mathfrak {T}_1({\mathfrak u})\), so \(4 {\mathfrak p}\lesssim 500 {\mathfrak u}\) by 5.3.5. For \(q \in B_{{\mathfrak u}''}({\mathcal{Q}}({\mathfrak u}''), 1)\) it follows by the triangle inequality that

\begin{align*} d_{{\mathfrak u}}({\mathcal{Q}}({\mathfrak u}), q) & \le d_{{\mathfrak u}}({\mathcal{Q}}({\mathfrak u}), {\vartheta }) + d_{{\mathfrak u}}({\vartheta }, {\mathcal{Q}}({\mathfrak u}’))\\ & \quad + d_{{\mathfrak u}}({\mathcal{Q}}({\mathfrak u}’), {\theta }) + d_{{\mathfrak u}}({\theta }, {\mathcal{Q}}({\mathfrak u}”)) + d_{{\mathfrak u}}({\mathcal{Q}}({\mathfrak u}”), q)\, . \end{align*}

Using 2.0.17 and the fact that \({\mathcal{I}}({\mathfrak u}) = {\mathcal{I}}({\mathfrak u}') = {\mathcal{I}}({\mathfrak u}'')\) this equals

\begin{align*} & \quad d_{{\mathfrak u}}({\mathcal{Q}}({\mathfrak u}), {\vartheta }) + d_{{\mathfrak u}'}({\vartheta }, {\mathcal{Q}}({\mathfrak u}’))\\ & \quad + d_{{\mathfrak u}'}({\mathcal{Q}}({\mathfrak u}’), {\theta }) + d_{{\mathfrak u}''}({\theta }, {\mathcal{Q}}({\mathfrak u}”)) + d_{{\mathfrak u}''}({\mathcal{Q}}({\mathfrak u}”), q)\\ & {\lt} 100 + 100 + 100 + 100 + 1 {\lt} 500\, . \end{align*}

Since \(4{\mathfrak p}\lesssim 500 {\mathfrak u}\), it follows that \(d_{{\mathfrak p}}({\mathcal{Q}}({\mathfrak p}), q) {\lt} 4 {\lt} 10\). We have shown that \(B_{{\mathfrak u}''}({\mathcal{Q}}({\mathfrak u}''), 1) \subset B_{{\mathfrak p}}({\mathcal{Q}}({\mathfrak p}), 10)\), combining this with \({\mathcal{I}}({\mathfrak u}'') = {\mathcal{I}}({\mathfrak u})\) gives \({\mathfrak u}\sim {\mathfrak u}''\).

For symmetry suppose that \({\mathfrak u}\sim {\mathfrak u}'\). By Lemma 5.4.1, it follows that \({\mathcal{I}}({\mathfrak u}) = {\mathcal{I}}({\mathfrak u}')\) and that there exists \({\vartheta }\in B_{{\mathfrak u}}({\mathcal{Q}}({\mathfrak u}), 100) \cap B_{{\mathfrak u}'}({\mathcal{Q}}({\mathfrak u}'), 100)\). Again, for \({\mathfrak u}= {\mathfrak u}'\) symmetry is obvious, so suppose that \({\mathfrak u}\ne {\mathfrak u}'\). There exists \({\mathfrak p}\in \mathfrak {T}_1({\mathfrak u}')\), which then satisfies \(2{\mathfrak p}\lesssim {\mathfrak u}'\) and \({\mathcal{I}}({\mathfrak p}) \neq {\mathcal{I}}({\mathfrak u}')\). By Lemma 5.3.1 and 5.3.5, it follows that

\begin{equation} \label{eq-rel1} 10{\mathfrak p}\lesssim 4{\mathfrak p}\lesssim 500 {\mathfrak u}'\, . \end{equation}
5.4.4

If \(q \in B_{{\mathfrak u}}({\mathcal{Q}}({\mathfrak u}),1)\) then we have from the triangle inequality and the fact that \({\mathcal{I}}({\mathfrak u}) = {\mathcal{I}}({\mathfrak u}')\):

\begin{align*} d_{{\mathfrak u}'}({\mathcal{Q}}({\mathfrak u}’), q) & \le d_{{\mathfrak u}'}({\mathcal{Q}}({\mathfrak u}’), {\vartheta }) + d_{{\mathfrak u}'}({\vartheta }, {\mathcal{Q}}({\mathfrak u})) + d_{{\mathfrak u}'}({\mathcal{Q}}({\mathfrak u}), q)\\ & = d_{{\mathfrak u}'}({\mathcal{Q}}({\mathfrak u}’), {\vartheta }) + d_{{\mathfrak u}}({\vartheta }, {\mathcal{Q}}({\mathfrak u})) + d_{{\mathfrak u}}({\mathcal{Q}}({\mathfrak u}), q)\\ & {\lt} 100 + 100 + 1 {\lt} 500\, . \end{align*}

Combining this with 5.4.4 and 2.0.24, we get

\begin{equation*} B_{{\mathfrak u}}({\mathcal{Q}}({\mathfrak u}), 1) \subset B_{{\mathfrak p}}({\mathcal{Q}}({\mathfrak p}), 10)\, . \end{equation*}

Since \(2{\mathfrak p}\lesssim {\mathfrak u}'\), we have \({\mathcal{I}}({\mathfrak p}) \subset {\mathcal{I}}({\mathfrak u}') = {\mathcal{I}}({\mathfrak u})\). Thus, \(10{\mathfrak p}\lesssim {\mathfrak u}\) which completes the proof of \({\mathfrak u}' \sim {\mathfrak u}\).

Choose a set \({\mathfrak U}_3(k,n,j)\) of representatives for the equivalence classes of \(\sim \) in \({\mathfrak U}_2(k,n,j)\). Define for each \({\mathfrak u}\in {\mathfrak U}_3(k,n,j)\)

\begin{equation} \label{definesv} {\mathfrak T}_2({\mathfrak u}):= \bigcup _{{\mathfrak u}\sim {\mathfrak u}'}\mathfrak {T}_1({\mathfrak u}')\cap {\mathfrak C}_6(k,n,j)\, . \end{equation}
5.4.5

Lemma 5.4.3 C6 forest
#

We have

\begin{equation} {\mathfrak C}_6(k,n,j)=\bigcup _{{\mathfrak u}\in {\mathfrak U}_3(k,n,j)}\mathfrak {T}_2({\mathfrak u})\, . \end{equation}
5.4.6

Proof

Let \({\mathfrak p}\in {\mathfrak C}_6(k,n,j)\). By 5.1.19 and 5.1.23, we have \({\mathfrak p}\in {\mathfrak C}_3(k,n,j)\). By 5.1.15 and 5.1.16, there exists \({\mathfrak u}\in {\mathfrak U}_1(k,n,j)\) with \(2{\mathfrak p}\lesssim {\mathfrak u}\) and \({\mathcal{I}}({\mathfrak p}) \ne {\mathcal{I}}({\mathfrak u})\), that is, with \({\mathfrak p}\in \mathfrak {T}_1({\mathfrak u})\). Then \(\mathfrak {T}_1({\mathfrak u})\) is clearly nonempty, so \({\mathfrak u}\in {\mathfrak U}_2(k,n,j)\). By the definition of \({\mathfrak U}_3(k,n,j)\), there exists \({\mathfrak u}' \in {\mathfrak U}_3(k,n,j)\) with \({\mathfrak u}\sim {\mathfrak u}'\). By 5.4.5, we have \({\mathfrak p}\in \mathfrak {T}_2({\mathfrak u}')\).

Lemma 5.4.4 forest geometry
#

For each \({\mathfrak u}\in {\mathfrak U}_3(k,n,j)\), the set \(\mathfrak {T}_2({\mathfrak u})\) satisfies 2.0.32.

Proof

Let \({\mathfrak p}\in \mathfrak {T}_2({\mathfrak u})\). By 5.4.5, there exists \({\mathfrak u}' \sim {\mathfrak u}\) with \({\mathfrak p}\in \mathfrak {T}_1({\mathfrak u}')\). Then we have \(2{\mathfrak p}\lesssim {\mathfrak u}'\) and \({\mathcal{I}}({\mathfrak p}) \ne {\mathcal{I}}({\mathfrak u}')\), so by 5.3.5 \(4{\mathfrak p}\lesssim 500{\mathfrak u}'\). Further, by Lemma 5.4.1, we have that \({\mathcal{I}}({\mathfrak u}') = {\mathcal{I}}({\mathfrak u})\) and there exists \({\vartheta }\in B_{{\mathfrak u}'}({\mathcal{Q}}({\mathfrak u}'),100) \cap B_{{\mathfrak u}}({\mathcal{Q}}({\mathfrak u}),100)\). Let \({\theta }\in B_{{\mathfrak u}}({\mathcal{Q}}({\mathfrak u}), 1)\). Using the triangle inequality and the fact that \({\mathcal{I}}({\mathfrak u}') ={\mathcal{I}}({\mathfrak u})\), we obtain

\begin{align*} d_{{\mathfrak u}'}({\mathcal{Q}}({\mathfrak u}’), {\theta }) & \le d_{{\mathfrak u}'}({\mathcal{Q}}({\mathfrak u}’), {\vartheta }) + d_{{\mathfrak u}'}({\mathcal{Q}}({\mathfrak u}), {\vartheta }) + d_{{\mathfrak u}'}({\mathcal{Q}}({\mathfrak u}), {\theta })\\ & = d_{{\mathfrak u}'}({\mathcal{Q}}({\mathfrak u}’), {\vartheta }) + d_{{\mathfrak u}}({\mathcal{Q}}({\mathfrak u}), {\vartheta }) + d_{{\mathfrak u}}({\mathcal{Q}}({\mathfrak u}), {\theta })\\ & {\lt} 100 + 100 + 1 {\lt} 500\, . \end{align*}

Combining this with \(4{\mathfrak p}\lesssim 500{\mathfrak u}'\), we obtain

\[ B_{{\mathfrak u}}({\mathcal{Q}}({\mathfrak u}), 1) \subset B_{{\mathfrak u}'}({\mathcal{Q}}({\mathfrak u}'), 500) \subset B_{{\mathfrak p}}({\mathcal{Q}}({\mathfrak p}), 4)\, . \]

Together with \({\mathcal{I}}({\mathfrak p}) \subset {\mathcal{I}}({\mathfrak u}') = {\mathcal{I}}({\mathfrak u})\), this gives \(4{\mathfrak p}\lesssim {\mathfrak u}\), which is 2.0.32.

Lemma 5.4.5 forest convex
#

For each \({\mathfrak u}\in {\mathfrak U}_3(k,n,j)\), the set \(\mathfrak {T}_2({\mathfrak u})\) satisfies the convexity condition 2.0.33.

Proof

Let \({\mathfrak p}, {\mathfrak p}'' \in \mathfrak {T}_2({\mathfrak u})\) and \({\mathfrak p}' \in {\mathfrak P}\) with \({\mathfrak p}\le {\mathfrak p}' \le {\mathfrak p}''\). By 5.4.5 we have \({\mathfrak p}, {\mathfrak p}'' \in {\mathfrak C}_6(k,n,j) \subset {\mathfrak C}_5(k,n,j)\). By Lemma 5.3.10, we have \({\mathfrak p}' \in {\mathfrak C}_5(k,n,j)\). Since \({\mathfrak p}\in {\mathfrak C}_6(k,n,j)\) we have \({\mathcal{I}}({\mathfrak p}) \not\subset G'\), so \({\mathcal{I}}({\mathfrak p}') \not\subset G'\) and therefore also \({\mathfrak p}' \in {\mathfrak C}_6(k,n,j)\).

By 5.4.5 there exists \({\mathfrak u}' \in {\mathfrak U}_2(k,n,j)\) with \({\mathfrak p}'' \in \mathfrak {T}_1({\mathfrak u}')\) and hence \(2{\mathfrak p}'' \lesssim {\mathfrak u}'\) and \({\mathcal{I}}({\mathfrak p}'') \ne {\mathcal{I}}({\mathfrak u}')\). Together this implies \({\mathcal{I}}({\mathfrak p}'') \subsetneq {\mathcal{I}}({\mathfrak u}')\). With the inclusion \({\mathcal{I}}({\mathfrak p}') \subset {\mathcal{I}}({\mathfrak p}'')\) from \({\mathfrak p}' \le {\mathfrak p}''\), it follows that \({\mathcal{I}}({\mathfrak p}') \subsetneq {\mathcal{I}}({\mathfrak u}')\) and hence \({\mathcal{I}}({\mathfrak p}') \ne {\mathcal{I}}({\mathfrak u}')\). By 5.3.3 and transitivity of \(\lesssim \) we further have \(2{\mathfrak p}' \lesssim {\mathfrak u}'\), so \({\mathfrak p}' \in \mathfrak {T}_1({\mathfrak u}')\). It follows that \({\mathfrak p}' \in \mathfrak {T}_2({\mathfrak u})\), which shows 2.0.33.

Lemma 5.4.6 forest separation
#

For each \({\mathfrak u},{\mathfrak u}'\in {\mathfrak U}_3(k,n,j)\) with \({\mathfrak u}\neq {\mathfrak u}'\) and each \({\mathfrak p}\in {\mathfrak T}_2({\mathfrak u})\) with \({\mathcal{I}}({\mathfrak p})\subset {\mathcal{I}}({\mathfrak u}')\) we have

\begin{equation} d_{{\mathfrak p}}({\mathcal{Q}}({\mathfrak p}), {\mathcal{Q}}({\mathfrak u}')) {\gt} 2^{Z(n+1)}\, . \end{equation}
5.4.7

Proof

By the definition 5.1.13 of \({\mathfrak C}_2(k,n,j)\), there exists a tile \({\mathfrak p}' \in {\mathfrak C}_1(k,n,j)\) with \({\mathfrak p}' \le {\mathfrak p}\) and \({\mathrm{s}}({\mathfrak p}') \le {\mathrm{s}}({\mathfrak p})- Z(n+1)\). By Lemma 2.1.2 we have

\[ d_{{\mathfrak p}}({\mathcal{Q}}({\mathfrak p}), {\mathcal{Q}}({\mathfrak u}')) \ge 2^{95a Z(n+1)} d_{{\mathfrak p}'}({\mathcal{Q}}({\mathfrak p}), {\mathcal{Q}}({\mathfrak u}'))\, . \]

By 5.3.3 we have \(2{\mathfrak p}' \lesssim 2{\mathfrak p}\), so by transitivity of \(\lesssim \) there exists \(\mathfrak {v} \sim {\mathfrak u}\) with \(2{\mathfrak p}' \lesssim \mathfrak {v}\) and \({\mathcal{I}}({\mathfrak p}') \ne {\mathcal{I}}(\mathfrak {v})\). Since \({\mathfrak u}, {\mathfrak u}'\) are not equivalent under \(\sim \), we have \(\mathfrak {v} \not\sim {\mathfrak u}'\), thus \(10{\mathfrak p}' \not\lesssim {\mathfrak u}'\). This implies that there exists \(q \in B_{{\mathfrak u}'}({\mathcal{Q}}({\mathfrak u}'), 1) \setminus B_{{\mathfrak p}'}({\mathcal{Q}}({\mathfrak p}'), 10)\).

From \({\mathfrak p}' \le {\mathfrak p}\), \({\mathcal{I}}({\mathfrak p}') \subset {\mathcal{I}}({\mathfrak p}) \subset {\mathcal{I}}({\mathfrak u}')\) and Lemma 2.1.2 it then follows that

\begin{align*} & \quad d_{{\mathfrak p}'}({\mathcal{Q}}({\mathfrak p}), {\mathcal{Q}}({\mathfrak u}’))\\ & \ge -d_{{\mathfrak p}'}({\mathcal{Q}}({\mathfrak p}), {\mathcal{Q}}({\mathfrak p}’)) + d_{{\mathfrak p}'}({\mathcal{Q}}({\mathfrak p}’), q) - d_{{\mathfrak p}'}(q, {\mathcal{Q}}({\mathfrak u}’))\\ & \ge -d_{{\mathfrak p}'}({\mathcal{Q}}({\mathfrak p}), {\mathcal{Q}}({\mathfrak p}’)) + d_{{\mathfrak p}'}({\mathcal{Q}}({\mathfrak p}’), q) - d_{{\mathfrak u}'}(q, {\mathcal{Q}}({\mathfrak u}’))\\ & {\gt} -1 + 10 - 1 = 8\, . \end{align*}

The lemma follows by combining the two displays with the fact that \(95 a \ge 1\).

Lemma 5.4.7 forest inner
#

For each \({\mathfrak u}\in {\mathfrak U}_3(k,n,j)\) and each \({\mathfrak p}\in \mathfrak {T}_2({\mathfrak u})\) we have

\begin{equation} B({\mathrm{c}}({\mathfrak p}), 8 D^{{\mathrm{s}}({\mathfrak p})}) \subset {\mathcal{I}}({\mathfrak u}). \end{equation}
5.4.8

Proof

Let \({\mathfrak p}\in \mathfrak {T}_2({\mathfrak u})\). Then \({\mathfrak p}\in {\mathfrak C}_4(k,n,j)\), hence there exists a chain

\[ {\mathfrak p}\le {\mathfrak p}_{Z(n+1)} \le \dotsb \le {\mathfrak p}_0 \]

of distinct tiles in \({\mathfrak C}_3(n,k,j)\). We pick such a chain and set \({\mathfrak q}= {\mathfrak p}_0\). Then we have from distinctness of the tiles in the chain that \({\mathrm{s}}({\mathfrak p}) \le {\mathrm{s}}({\mathfrak q}) - Z(n+1)\). By 5.1.16 there exists \({\mathfrak u}'' \in {\mathfrak U}_1(k,n,j)\) with \(2{\mathfrak q}\lesssim {\mathfrak u}''\) and \({\mathrm{s}}({\mathfrak q}) {\lt} {\mathrm{s}}({\mathfrak u}'')\). Then we have in particular by Lemma 5.3.1 that \(10 {\mathfrak p}\lesssim {\mathfrak u}''\). Let \({\mathfrak u}' \sim {\mathfrak u}\) be such that \({\mathfrak p}\in \mathfrak {T}_1({\mathfrak u}')\). By the definition of \(\sim \), it follows that \({\mathfrak u}' \sim {\mathfrak u}''\). By transitivity of \(\sim \), we have \({\mathfrak u}\sim {\mathfrak u}''\). By Lemma 5.4.1, we have \(\sc ({\mathfrak u}'') = \sc ({\mathfrak u})\), hence \({\mathrm{s}}({\mathfrak q}) {\lt} {\mathrm{s}}({\mathfrak u})\) and \({\mathrm{s}}({\mathfrak p}) \le {\mathrm{s}}({\mathfrak q}) - Z(n+1) \le {\mathrm{s}}({\mathfrak u}) - Z(n+1) - 1\).

Thus, there exists some cube \(I \in \mathcal{D}\) with \(s(I) = {\mathrm{s}}({\mathfrak u}) - Z(n+1) - 1\) and \(I \subset {\mathcal{I}}({\mathfrak u})\) and \({\mathcal{I}}({\mathfrak p}) \subset I\). Since \({\mathfrak p}\in {\mathfrak C}_5(k,n,j)\), we have that \(I \notin \mathcal{L}({\mathfrak u})\), so \(B(c(I), 8D^{s(I)}) \subset {\mathcal{I}}({\mathfrak u})\). By the triangle inequality, 2.0.1 and \(a \ge 4\), the same then holds for the subcube \({\mathcal{I}}({\mathfrak p}) \subset I\).

Lemma 5.4.8 forest stacking
#

It holds for \(k\le n\) that

\begin{equation} \sum _{{\mathfrak u}\in {\mathfrak U}_3(k,n,j)} \mathbf{1}_{{\mathcal{I}}({\mathfrak u})} \le (4n+12)2^{n}\, . \end{equation}
5.4.9

Proof

Suppose that a point \(x\) is contained in more than \((4n + 12)2^n\) cubes \({\mathcal{I}}({\mathfrak u})\) with \({\mathfrak u}\in {\mathfrak U}_3(k,n,j)\). Since \({\mathfrak U}_3(k,n,j) \subset {\mathfrak C}_1(k,n,j)\) for each such \({\mathfrak u}\), there exists \(\mathfrak {m} \in \mathfrak {M}(k,n)\) such that \(100{\mathfrak u}\lesssim \mathfrak {m}\). We fix such an \(\mathfrak {m}({\mathfrak u}) := \mathfrak {m}\) for each \({\mathfrak u}\), and claim that the map \({\mathfrak u}\mapsto \mathfrak {m}({\mathfrak u})\) is injective. Indeed, assume for \({\mathfrak u}\neq {\mathfrak u}'\) there is \(\mathfrak {m} \in \mathfrak {M}(k,n)\) such that \(100{\mathfrak u}\lesssim \mathfrak {m}\) and \(100{\mathfrak u}' \lesssim \mathfrak {m}\). By 2.0.8, either \({\mathcal{I}}({\mathfrak u}) \subset {\mathcal{I}}({\mathfrak u}')\) or \({\mathcal{I}}({\mathfrak u}') \subset {\mathcal{I}}({\mathfrak u})\). By 5.1.14, \(B_{{\mathfrak u}}({\mathcal{Q}}({\mathfrak u}),100) \cap B_{{\mathfrak u}'}({\mathcal{Q}}({\mathfrak u}'), 100) = \emptyset \). This contradicts \(\Omega (\mathfrak {m})\) being contained in both sets by 2.0.15. Thus \(x\) is contained in more than \((4n + 12)2^n\) cubes \({\mathcal{I}}(\mathfrak {m})\), \(\mathfrak {m} \in \mathfrak {M}(k,n)\). Consequently, we have by 5.1.26 that \(x \in A(2n + 6, k,n) \subset G_2\). Let \({\mathcal{I}}({\mathfrak u})\) be an inclusion minimal cube among the \({\mathcal{I}}({\mathfrak u}'), {\mathfrak u}' \in {\mathfrak U}_3(k,n,j)\) with \(x \in {\mathcal{I}}({\mathfrak u})\). By the dyadic property 2.0.8, we have \({\mathcal{I}}({\mathfrak u}) \subset {\mathcal{I}}({\mathfrak u}')\) for all cubes \({\mathcal{I}}({\mathfrak u}')\) containing \(x\). Thus

\[ {\mathcal{I}}({\mathfrak u}) \subset \{ y \ : \ \sum _{{\mathfrak u}\in {\mathfrak U}_3(k,n,j)} \mathbf{1}_{{\mathcal{I}}({\mathfrak u})}(y) {\gt} 1 + (4n+12)2^{n}\} \subset G_2\, . \]

Thus \(\mathfrak {T}_1({\mathfrak u}) \cap {\mathfrak C}_6(k,n,j) = \emptyset \). This contradicts \({\mathfrak u}\in {\mathfrak U}_2(k,n,j)\).

We now turn to the proof of Lemma 5.1.2.

Proof of Lemma 5.1.2

We first fix \(k,n, j\). By 2.0.21 and 2.0.20, we have that \(\mathbf{1}_{{\mathcal{I}}({\mathfrak p})} T_{{\mathfrak p}}f(x) = T_{{\mathfrak p}}f(x)\) and hence \(\mathbf{1}_{G \setminus G'} T_{{\mathfrak p}}f(x)= 0\) for all \({\mathfrak p}\in {\mathfrak C}_5(k,n,j) \setminus {\mathfrak C}_6(k,n,j)\). Thus it suffices to estimate the contribution of the sets \({\mathfrak C}_6(k,n,j)\). By Lemma 5.4.8, we can decompose \({\mathfrak U}_3(k,n,j)\) as a disjoint union of at most \(4n + 13\) collections \({\mathfrak U}_4(k,n,j,l)\), \(1 \le l \le 4n+13\), each satisfying

\[ \sum _{{\mathfrak u}\in {\mathfrak U}_4(k,n,j,l)} \mathbf{1}_{{\mathcal{I}}({\mathfrak u})} \le 2^n\, . \]

By Lemmas 5.4.4, 5.4.5, 5.4.6, 5.4.7 and 5.3.12, the pairs

\[ ({\mathfrak U}_4(k,n,j,l), \mathfrak {T}_2|_{{\mathfrak U}_4(k,n,j,l)}) \]

are \(n\)-forests for each \(k,n,j,l\), and by Lemma 5.4.3, we have

\[ {\mathfrak C}_6(k,n,j) = \bigcup _{l = 1}^{4n + 13} \bigcup _{{\mathfrak u}\in {\mathfrak U}_4(k,n,j,l)} \mathfrak {T}_2({\mathfrak u})\, . \]

Since \({\mathcal{I}}({\mathfrak p}) \not\subset G_1\) for all \({\mathfrak p}\in {\mathfrak C}_6(k,n,j)\), we have \({\mathfrak C}_6(k,n,j) \cap {\mathfrak P}_{F,G} = \emptyset \) and hence

\[ \operatorname{\operatorname {dens}}_2(\bigcup _{{\mathfrak u}\in {\mathfrak U}_4(k,n,j,l)} \mathfrak {T}_2({\mathfrak u})) \le 2^{2a + 5} \frac{\mu (F)}{\mu (G)}\, . \]

Using the triangle inequality according to the splitting by \(k,n,j\) and \(l\) in 5.1.31 and applying Proposition 2.0.4 to each term, we obtain the estimate

\[ \sum _{k \ge 0}\sum _{n \ge k} (2n+3)(4n+13) 2^{432a^3}2^{-(1-\frac{1}{q})n}(2^{2a+5} \frac{\mu (F)}{\mu (G)})^{\frac{1}{q} - \frac{1}{2}} \| f\| _2 \| \mathbf{1}_{G\setminus G'}\| _2 \]

for the left hand side of 5.1.31. Since \(|f| \le \mathbf{1}_F\), we have \(\| f\| _2 \le \mu (F)^{1/2}\), and we have \(\| \mathbf{1}_{G\setminus G'}\| _2 \le \mu (G)^{1/2}\). Combining this with \(a \ge 4\), we estimate by

\[ 2^{433a^3} \mu (F)^{\frac{1}{q}} \mu (G)^{1 -\frac{1}{q}} \sum _{k \ge 0}\sum _{n \ge k}n^2 2^{-(1-\frac{1}{q})n}\, . \]

Interchanging the order of summation, the sum equals

\[ \sum _{n \ge 0} n^2(n+1) 2^{-\frac{q-1}{q}n} \le \frac{2^{2a^3}}{(q-1)^4}\, , \]

which completes the proof of the lemma.

5.5 Proof of the Forest Complement Lemma

Define \({\mathfrak P}_{G \setminus G'}\) to be the set of all \({\mathfrak p}\in {\mathfrak P}\) such that \(\mu ({\mathcal{I}}({\mathfrak p}) \cap (G \setminus G')) {\gt} 0\).

Lemma 5.5.1 antichain decomposition
#

We have that

\begin{align} \label{eq-fp'-decomposition} & \quad {\mathfrak P}_2 \cap {\mathfrak P}_{G \setminus G'}\\ & = \bigcup _{k \ge 0} \bigcup _{n \ge k} {\mathfrak L}_0(k,n) \cap {\mathfrak P}_{G \setminus G'} \\ & \quad \cup \bigcup _{k \ge 0} \bigcup _{n \ge k}\bigcup _{0 \le j \le 2n+3} {\mathfrak L}_2(k,n,j) \cap {\mathfrak P}_{G \setminus G'}\\ & \quad \cup \bigcup _{k \ge 0} \bigcup _{n \ge k}\bigcup _{0 \le j \le 2n+3} \bigcup _{0 \le l \le Z(n+1)} {\mathfrak L}_1(k,n,j,l) \cap {\mathfrak P}_{G \setminus G'}\\ & \quad \cup \bigcup _{k \ge 0} \bigcup _{n \ge k}\bigcup _{0 \le j \le 2n+3} \bigcup _{0 \le l \le Z(n+1)} {\mathfrak L}_3(k,n,j,l)\cap {\mathfrak P}_{G \setminus G'}\, . \end{align}
Proof

Let \({\mathfrak p}\in {\mathfrak P}_2 \cap {\mathfrak P}_{G \setminus G'}\). Clearly, for every cube \(J = {\mathcal{I}}({\mathfrak p})\) with \({\mathfrak p}\in {\mathfrak P}_{G \setminus G'}\) there exists some \(k \ge 0\) such that 5.1.1 holds, and for no cube \(J \in \mathcal{D}\) and no \(k {\lt} 0\) does 5.1.2 hold. Thus \({\mathfrak p}\in {\mathfrak P}(k)\) for some \(k \ge 0\).

Next, since \(E_2(\lambda , {\mathfrak p}') \subset {\mathcal{I}}({\mathfrak p}')\cap G\) for every \(\lambda \ge 2\) and every tile \({\mathfrak p}' \in {\mathfrak P}(k)\) with \(\lambda {\mathfrak p}\lesssim \lambda {\mathfrak p}'\), it follows from 5.1.2 that \(\mu (E_2(\lambda , {\mathfrak p}')) \le 2^{-k} \mu ({\mathcal{I}}({\mathfrak p}'))\) for every such \({\mathfrak p}'\), so \(\operatorname{\operatorname {dens}}_k'(\{ {\mathfrak p}\} ) \le 2^{-k}\). Combining this with \(a \ge 0\), it follows from 5.1.7 that there exists \(n\ge k\) with \({\mathfrak p}\in {\mathfrak C}(k,n)\).

Since \({\mathfrak p}\in {\mathfrak P}_{G \setminus G'}\), we have in particular \({\mathcal{I}}({\mathfrak p}) \not\subset A(2n + 6, k, n)\), so there exist at most \(1 + (4n + 12)2^n {\lt} 2^{2n+4}\) tiles \(\mathfrak {m} \in \mathfrak {M}(k,n)\) with \({\mathfrak p}\le \mathfrak {m}\). It follows that \({\mathfrak p}\in {\mathfrak L}_0(k,n)\) or \({\mathfrak p}\in {\mathfrak C}_1(k,n,j)\) for some \(1 \le j \le 2n + 3\). In the former case we are done, in the latter case the equality to be shown follows from the definitions of the collections \({\mathfrak C}_i\) and \({\mathfrak L}_i\).

Lemma 5.5.2 L0 antichain

We have that

\[ {\mathfrak L}_0(k,n) = \dot{\bigcup _{1 \le l \le n}} {\mathfrak L}_0(k,n,l)\, , \]

where each \({\mathfrak L}_0(k,n,l)\) is an antichain.

Proof

It suffices to show that \({\mathfrak L}_0(k,n)\) contains no chain of length \(n + 1\). Suppose that we had such a chain \({\mathfrak p}_0 \le {\mathfrak p}_1 \le \dotsb \le {\mathfrak p}_{n}\) with \({\mathfrak p}_i \ne {\mathfrak p}_{i+1}\) for \(i =0, \dotsc , n-1\). By 5.1.7, we have that \(\operatorname{\operatorname {dens}}_k'(\{ {\mathfrak p}_n\} ) {\gt} 2^{-n}\). Thus, by 5.1.6, there exists \({\mathfrak p}' \in {\mathfrak P}(k)\) and \(\lambda \ge 2\) with \(\lambda {\mathfrak p}_n \le \lambda {\mathfrak p}'\) and

\begin{equation} \label{eq-p'} \frac{\mu (E_2(\lambda , {\mathfrak p}'))}{\mu ({\mathcal{I}}({\mathfrak p}'))} {\gt} \lambda ^{a} 2^{4a} 2^{-n}\, . \end{equation}
5.5.6

Let \(\mathfrak {O}\) be the set of all \({\mathfrak p}'' \in {\mathfrak P}(k)\) such that we have \( {\mathcal{I}}({\mathfrak p}'') = {\mathcal{I}}({\mathfrak p}')\) and \(B_{{\mathfrak p}'}({\mathcal{Q}}({\mathfrak p}'), \lambda ) \cap \Omega ({\mathfrak p}'') \neq \emptyset \). We now show that

\begin{equation} \label{eq-O-bound} |\mathfrak {O}| \le 2^{4a}\lambda ^a\, . \end{equation}
5.5.7

The balls \(B_{{\mathfrak p}'}({\mathcal{Q}}({\mathfrak p}''), 0.2)\), \({\mathfrak p}'' \in \mathfrak {O}\) are disjoint by 2.0.15, and by the triangle inequality contained in \(B_{{\mathfrak p}'}({\mathcal{Q}}({\mathfrak p}'), \lambda +1.2)\). By assumption 1.0.11 on \(\Theta \), this ball can be covered with

\[ 2^{a\lceil \log _2(\lambda +1.2) + \log _2(5)\rceil } \le 2^{a(\log _2(\lambda ) + 4)} = 2^{4a}\lambda ^a \]

many \(d_{{\mathfrak p}'}\)-balls of radius \(0.2\). Here we have used that for \(\lambda \ge 2\)

\[ \lceil \log _2(\lambda + 1.2) + \log _2(5) \rceil \le 1+ \log _2(1.6 \lambda ) + \log _2(5) = 4 + \log _2(\lambda )\, . \]

By the triangle inequality, each such ball contains at most one \({\mathcal{Q}}({\mathfrak p}'')\), and each \({\mathcal{Q}}({\mathfrak p}'')\) is contained in one of the balls. Thus we get 5.5.7.

By 2.0.26 and 2.0.27 we have \(E_2(\lambda , {\mathfrak p}') \subset \bigcup _{{\mathfrak p}'' \in \mathfrak {O}} E_1({\mathfrak p}'')\), thus

\[ 2^{4a}\lambda ^a 2^{-n} {\lt} \sum _{{\mathfrak p}'' \in \mathfrak {O}} \frac{\mu (E_1({\mathfrak p}''))}{\mu ({\mathcal{I}}({\mathfrak p}''))}\, . \]

Hence there exists a tile \({\mathfrak p}'' \in \mathfrak {O}\) with

\begin{equation*} \mu (E_1({\mathfrak p}”)) \ge 2^{-n} \mu ({\mathcal{I}}({\mathfrak p}’))\, . \end{equation*}

By the definition 5.1.5 of \(\mathfrak {M}(k,n)\), there exists a tile \(\mathfrak {m} \in \mathfrak {M}(k,n)\) with \({\mathfrak p}' \leq \mathfrak {m}\). From 5.5.6, the inclusion \(E_2(\lambda , {\mathfrak p}') \subset {\mathcal{I}}({\mathfrak p}')\) and \(a\ge 1\) we obtain

\[ 2^n \geq 2^{4a} \lambda ^{a} \geq \lambda \, . \]

From the triangle inequality, Lemma 2.1.2 and \(a \ge 1\), we now obtain for all \({\vartheta }\in B_{\mathfrak {m}}({\mathcal{Q}}(\mathfrak {m}), 1)\) that

\begin{align*} & \quad d_{{\mathfrak p}_0}({\mathcal{Q}}({\mathfrak p}_0), {\vartheta })\\ & \leq d_{{\mathfrak p}_0}({\mathcal{Q}}({\mathfrak p}_0), {\mathcal{Q}}({\mathfrak p}_{n})) + d_{{\mathfrak p}_0}({\mathcal{Q}}({\mathfrak p}_{n}), {\mathcal{Q}}({\mathfrak p}’)) + d_{{\mathfrak p}_0}({\mathcal{Q}}({\mathfrak p}’), {\mathcal{Q}}({\mathfrak p}”))\\ & \quad + d_{{\mathfrak p}_0}({\mathcal{Q}}({\mathfrak p}”), {\mathcal{Q}}(\mathfrak {m})) + d_{{\mathfrak p}_0}({\mathcal{Q}}(\mathfrak {m}), {\vartheta })\\ & \leq 1 + 2^{-95an} (d_{{\mathfrak p}_{n}}({\mathcal{Q}}({\mathfrak p}_n), {\mathcal{Q}}({\mathfrak p}’)) + d_{{\mathfrak p}'}({\mathcal{Q}}({\mathfrak p}’), {\mathcal{Q}}({\mathfrak p}”))\\ & \quad + d_{{\mathfrak p}''}({\mathcal{Q}}({\mathfrak p}”), {\mathcal{Q}}(\mathfrak {m})) + d_{\mathfrak {m}}({\mathcal{Q}}(\mathfrak {m}), {\vartheta }))\\ & \leq 1 + 2^{-95an}(\lambda + (\lambda + 1) + 1 + 1) \leq 100\, . \end{align*}

Thus, by 2.0.23, \(100{\mathfrak p}_0 \lesssim \mathfrak {m}\), a contradiction to \({\mathfrak p}_0 \notin {\mathfrak C}(k,n)\).

Lemma 5.5.3 L2 antichain
#

Each of the sets \({\mathfrak L}_2(k,n,j)\) is an antichain.

Proof

Suppose that there are \({\mathfrak p}_0, {\mathfrak p}_1 \in {\mathfrak L}_2(k,n,j)\) with \({\mathfrak p}_0 \ne {\mathfrak p}_1\) and \({\mathfrak p}_0 \le {\mathfrak p}_1\). By Lemma 5.3.1 and Lemma 5.3.2, it follows that \(2{\mathfrak p}_0 \lesssim 200{\mathfrak p}_1\). Since \({\mathfrak L}_2(k,n,j)\) is finite, there exists a maximal \(l \ge 1\) such that there exists a chain \(2{\mathfrak p}_0 \lesssim 200 {\mathfrak p}_1 \lesssim \dotsb \lesssim 200 {\mathfrak p}_l\) with all \({\mathfrak p}_i\) in \({\mathfrak C}_1(k,n,j)\) and \({\mathfrak p}_i \ne {\mathfrak p}_{i+1}\) for \(i = 0, \dotsc , l-1\). If we have \({\mathfrak p}_l \in {\mathfrak U}_1(k,n,j)\), then it follows from \(2{\mathfrak p}_0 \lesssim 200 {\mathfrak p}_l \lesssim {\mathfrak p}_l\) and 5.1.15 that \({\mathfrak p}_0 \not\in {\mathfrak L}_2(k,n,j)\), a contradiction. Thus, by the definition 5.1.14 of \({\mathfrak U}_1(k,n,j)\), there exists \({\mathfrak p}_{l+1} \in {\mathfrak C}_1(k,n,j)\) with \({\mathcal{I}}({\mathfrak p}_l) \subsetneq {\mathcal{I}}({\mathfrak p}_{l+1}) \) and \({\vartheta }\in B_{{\mathfrak p}_l}({\mathcal{Q}}({\mathfrak p}_l), 100) \cap B_{{\mathfrak p}_{l+1}}({\mathcal{Q}}({\mathfrak p}_{l+1}), 100)\). Using the triangle inequality and Lemma 2.1.2, one deduces that \(200 {\mathfrak p}_l \lesssim 200{\mathfrak p}_{l+1}\). This contradicts maximality of \(l\).

Lemma 5.5.4 L1 L3 antichain
#

Each of the sets \({\mathfrak L}_1(k,n,j,l)\) and \({\mathfrak L}_3(k,n,j,l)\) is an antichain.

Proof

By its definition 5.1.11, each set \({\mathfrak L}_1(k,n,j,l)\) is a set of minimal elements in some set of tiles with respect to \(\le \). If there were distinct \({\mathfrak p}, {\mathfrak q}\in {\mathfrak L}_1(k,n,j,l)\) with \({\mathfrak p}\le {\mathfrak q}\), then \({\mathfrak q}\) would not be minimal. Hence such \({\mathfrak p}, {\mathfrak q}\) do not exist. Similarly, by 5.1.17, each set \({\mathfrak L}_3(k,n,j,l)\) is a set of maximal elements in some set of tiles with respect to \(\le \). If there were distinct \({\mathfrak p}, {\mathfrak q}\in {\mathfrak L}_3(k,n,j,l)\) with \({\mathfrak p}\le {\mathfrak q}\), then \({\mathfrak p}\) would not be maximal.

We now turn to the proof of Lemma 5.1.3.

Proof of Lemma 5.1.3

If \({\mathfrak p}\not\in {\mathfrak P}_{G \setminus G'}\), then \(\mu ({\mathcal{I}}({\mathfrak p}) \cap (G \setminus G')) = 0\). By 2.0.21 and 2.0.26, it follows that \(\mathbf{1}_{G \setminus G'} T_{{\mathfrak p}}f(x) = 0\). We thus have

\[ \mathbf{1}_{G\setminus G'} \sum _{{\mathfrak p}\in {\mathfrak P}_2} T_{{\mathfrak p}}f(x) = \mathbf{1}_{G\setminus G'} \sum _{{\mathfrak p}\in {\mathfrak P}_2 \cap {\mathfrak P}_{G \setminus G'}} T_{{\mathfrak p}}f(x)\, . \]

Let \({\mathfrak L}(k,n)\) denote any of the terms \({\mathfrak L}_i(k,n,j,l) \cap {\mathfrak P}_{G \setminus G'}\) on the right hand side of 5.5.1, where the indices \(j, l\) may be void. Then \({\mathfrak L}(k,n)\) is an antichain, by Lemmas 5.5.2,5.5.3, 5.5.4. Further, we have

\begin{equation*} \operatorname{\operatorname {dens}}_1({\mathfrak L}(k,n)) \le 2^{4a+1 - n} \end{equation*}

by Lemma 5.3.12, and we have

\begin{equation*} \operatorname{\operatorname {dens}}_2({\mathfrak L}(k,n)) \le 2^{2a+5} \frac{\mu (F)}{\mu (G)}, \end{equation*}

since

\begin{equation*} {\mathfrak L}(k,n) \cap {\mathfrak P}_{F,G} \subset {\mathfrak P}_{G \setminus G'} \cap {\mathfrak P}_{F, G} = \emptyset . \end{equation*}

Applying now the triangle inequality according to the decomposition in Lemma 5.5.1, and then applying Proposition 2.0.3 to each term, we obtain the estimate

\begin{multline*} \le \sum _{k \ge 0} \sum _{n \ge k} (n + (2n+4) + 2(2n+4) Z(n+1)) \\ \times 2^{201a^3}(q-1)^{-1} (2^{4a+1-n})^{\frac{q-1}{8a^4}} (2^{2a+5} \frac{\mu (F)}{\mu (G)})^{\frac{1}{q} - \frac{1}{2}} \| f\| _2\| \mathbf{1}_{G\setminus G'}\| _2\, . \end{multline*}

Because \(|f| \le \mathbf{1}_F\), we have \(\| f\| _2 \le \mu (F)^{1/2}\), and we have \(\| \mathbf{1}_{G\setminus G'}\| _2 \le \mu (G)^{1/2}\). Using this and 2.0.3, we bound

\[ \le 2^{202a^3} (q - 1)^{-1} \mu (F)^{\frac{1}{q}} \mu (G)^{\frac{1}{q'}} \sum _{k \ge 0} \sum _{n \ge k} n^2 2^{-n\frac{q-1}{8a^4}}\, . \]

The last sum equals, by changing the order of summation,

\[ \sum _{n \ge 0} n^2(n+1) 2^{-n\frac{q-1}{8a^4}} \le \frac{2^{8a^3}}{(q-1)^4}\, . \]

This completes the proof.