Carleson operators on doubling metric measure spaces

9 Proof of Vitali covering and Hardy–Littlewood

We begin with a classical representation of the Lebesgue norm.

Lemma 9.0.1 layer cake representation
#

Let \(1\le p{\lt} \infty \). Then for any measurable function \(u:X\to [0,\infty )\) on the measure space \(X\) relative to the measure \(\mu \) we have

\begin{equation} \label{eq-layercake} \| u\| _p^p=p\int _0^\infty \lambda ^{p-1}\mu (\{ x: u(x)\ge \lambda \} )\, d\lambda \, . \end{equation}
9.0.1

Proof

The left-hand side of 9.0.1 is by definition

\begin{equation} \int _X u(x)^p \, d\mu (x)\, .\end{equation}
9.0.2

Writing \(u(x)\) as an elementary integral in \(\lambda \) and then using Fubini, we write for the last display

\begin{equation} =\int _X \int _0^{u(x)} p \lambda ^{p-1} d\lambda \, d\mu (x) \end{equation}
9.0.3

\begin{equation} =p\int _0^{\infty } \lambda ^{p-1} \mu (\{ x: u(x)\ge \lambda \} ) d\lambda \, . \end{equation}
9.0.4

This proves the lemma.

We turn to the proof of Proposition 2.0.6. Let the collection \(\mathcal{B}\) be given. We first show 2.0.43.

We recursively choose a finite sequence \(B_i\in \mathcal{B}\) for \(i\ge 0\) as follows. Assume \(B_{i'}\) is already chosen for \(0\le i'{\lt}i\). If there exists a ball \(B_{i}\in \mathcal{B}\) so that \(B_{i}\) is disjoint from all \(B_{i'}\) with \(0\le i'{\lt}i\), then choose such a ball \(B_i=B(x_i,r_i)\) with maximal \(r_i\).

If there is no such ball, stop the selection and set \(i'':=i\).

By disjointedness of the chosen balls and since \(0 \le u\), we have

\begin{equation} \sum _{0\le i{\lt}i''}\int _{B_i} u(x)\, d\mu (x) \le \int _X u(x)\, d\mu (x)\, . \end{equation}
9.0.5

By 2.0.42, we conclude

\begin{equation} \label{eqbes1} \lambda \sum _{0\le i{\lt}i''}\mu (B_i) \le \int _X u(x)\, d\mu (x)\, . \end{equation}
9.0.6

Let \(x\in \bigcup \mathcal{B}\). Choose a ball \(B'=B(x',r')\in \mathcal{B}\) such that \(x\in B'\). If \(B'\) is one of the selected balls, then

\begin{equation} \label{3rone} x\in \bigcup _{0\le i{\lt} i''}B_i\subset \bigcup _{0\le i{\lt} i''}B(x_i,3r_i)\, . \end{equation}
9.0.7

If \(B'\) is not one of the selected balls, then as it is not selected at time \(i''\), there is a selected ball \(B_i\) with \(B'\cap B_i\neq \emptyset \). Choose such \(B_i\) with minimal index \(i\). As \(B'\) is therefore disjoint from all balls \(B_{i'}\) with \(i'{\lt}i\) and as it was not selected in place of \(B_i\), we have \(r_i\ge r'\).

Using a point \(y\) in the intersection of \(B_i\) and \(B'\), we conclude by the triangle inequality

\begin{equation} \rho (x_i,x')\le \rho (x_i,y)+\rho (x',y)\le r_i+r'\le 2r_i \, . \end{equation}
9.0.8

By the triangle inequality again, we further conclude

\begin{equation} \rho (x_i,x)\le \rho (x_i,x')+\rho (x',x)\le 2r_i+r'\le 3r_i \, . \end{equation}
9.0.9

It follows that

\begin{equation} \label{3rtwo} x\in \bigcup _{0\le i{\lt} i''}B(x_i,3r_i)\, . \end{equation}
9.0.10

With 9.0.7 and 9.0.10, we conclude

\begin{equation} \bigcup \mathcal{B}\subset \bigcup _{0\le i{\lt} i''}B(x_i,3r_i)\, . \end{equation}
9.0.11

With the doubling property 1.0.5 applied twice, we conclude

\begin{equation} \label{eqbes2} \mu (\bigcup {\mathcal{B}}) \le \sum _{0\le i{\lt} i''}\mu (B(x_i,3r_i)) \le 2^{2a}\sum _{0\le i{\lt} i''}\mu (B_i)\, . \end{equation}
9.0.12

With 9.0.6 and 9.0.12 we conclude 2.0.43.

We turn to the proof of 2.0.44. We first consider the case \(p_1=1\) and recall \(M_{\mathcal{B}}=M_{\mathcal{B},1}\). We write for the \(p_2\)-th power of left-hand side of 2.0.44 with Lemma 9.0.1 and a change of variables

\begin{equation} \| M_{\mathcal{B}}u(x)\| _{p_2}^{p_2} =p_2\int _0^{\infty } \lambda ^{p_2-1} \mu (\{ x: M_{\mathcal{B}}u(x)\ge \lambda \} ) d\lambda \, \end{equation}
9.0.13

\begin{equation} \label{eqbesi11} =2^{p_2} p_2\int _0^{\infty } \lambda ^{p_2-1} \mu (\{ x: M_{\mathcal{B}}u(x)\ge 2\lambda \} ) d\lambda \, . \end{equation}
9.0.14

Fix \(\lambda \ge 0\) and let \(x\in X\) satisfy \(M_{\mathcal{B}}u(x)\ge 2\lambda \). By definition of \(M_{\mathcal{B}}\), there is a ball \(B'\in \mathcal{B}\) such that \(x\in B'\) and

\begin{equation} \label{eqbesi10} \int _{B'} u(y)\, d\mu (y)\ge 2\lambda \mu ({B’}) \, . \end{equation}
9.0.15

Define \(u_\lambda (y):=0\) if \(|u(y)|{\lt}\lambda \) and \(u_\lambda (y):=u(y)\) if \(|u(y)|\ge \lambda \). Then with 9.0.15

\begin{equation} \int _{B'} u_\lambda (y)\, d\mu (y) =\int _{B'} u (y)\, d\mu (y)- \int _{B'} (u-u_\lambda ) (y) d\mu (y)\, \end{equation}
9.0.16

\begin{equation} \ge 2\lambda \mu ({B’})- \int _{B'} (u-u_\lambda ) (y) d\mu (y)\, . \end{equation}
9.0.17

As \((u-u_\lambda )(y)\le \lambda \) by definition, we can estimate the last display by

\begin{equation} \ge 2\lambda \mu ({B’})- \int _{B'} \lambda \, d\mu (y) =\lambda \mu ({B’})\, . \end{equation}
9.0.18

Hence \(x\) is contained in \(\bigcup (\mathcal{B}_\lambda )\), where \(\mathcal{B}_\lambda \) is the collection of balls \(B''\) in \(\mathcal{B}\) such that

\begin{equation} \int _{B''} u_\lambda (y)\, d\mu (y)\ge \lambda \mu (B'')\, . \end{equation}
9.0.19

We have thus seen

\begin{equation} \{ x: M_{\mathcal{B}}u(x)\ge 2\lambda \} \subset \bigcup \mathcal{B}_\lambda \, . \end{equation}
9.0.20

Applying 2.0.43 to the collection \(\mathcal{B}_\lambda \) gives

\begin{equation} \lambda \mu (\{ x: M_{\mathcal{B}}u(x)\ge 2\lambda \} )\le 2^{2a} \int u_\lambda (x)\, dx\, . \end{equation}
9.0.21

With Lemma 9.0.1,

\begin{equation} \label{eqbesi12} \lambda \mu (\{ x: M_{\mathcal{B}}u(x)\ge 2\lambda \} )\le 2^{2a} \int _0^\infty \mu (\{ x: |u_\lambda (x)|\ge \lambda '\} )\, d\lambda '\, . \end{equation}
9.0.22

By definition of \(h_\lambda \), making a case distinction between \(\lambda \ge \lambda '\) and \(\lambda {\lt}\lambda '\), we see that

\begin{equation} \label{eqbesi13} \mu (\{ x: |u_\lambda (x)|\ge \lambda '\} ) \le \mu (\{ x: |u (x)|\ge \max (\lambda ,\lambda ')\} )\, . \end{equation}
9.0.23

We obtain with 9.0.14, 9.0.22, and 9.0.23

\begin{equation} \| M_{\mathcal{B}}u(x)\| _{p_2}^{p_2} \end{equation}
9.0.24

\begin{equation} \le 2^{p_2+2a} p_2 \int _0^\infty \lambda ^{p_2-2} \int _0^\infty \mu (\{ x: |u (x)|\ge \max (\lambda ,\lambda ')\} ) \, d\lambda 'd\lambda \, . \end{equation}
9.0.25

We split the integral into \(\lambda \ge \lambda '\) and \(\lambda {\lt}\lambda '\) and resolve the maximum correspondingly. We have for \(\lambda \ge \lambda '\) with Lemma 9.0.1

\begin{equation} \int _0^\infty \lambda ^{p_2-2} \int _0^\lambda \mu (\{ x: |u (x)|\ge \lambda \} ) \, d\lambda 'd\lambda \end{equation}
9.0.26

\begin{equation} =\int _0^\infty \lambda ^{p_2-1} \mu (\{ x: |u (x)|\ge \lambda \} ) d\lambda . \end{equation}
9.0.27

\begin{equation} \label{eqbesi14} =p_2^{-1} \| u\| _{p_2}^{p_2}\, . \end{equation}
9.0.28

We have for \(\lambda {\lt} \lambda '\) with Fubini and Lemma 9.0.1

\begin{equation} \int _0^\infty \lambda ^{p_2-2} \int _\lambda ^\infty \mu (\{ x: |u(x)|\ge \lambda '\} ) \, d\lambda 'd\lambda . \end{equation}
9.0.29

\begin{equation} =\int _0^\infty \int _0^{\lambda '}\lambda ^{p_2-2} \mu (\{ x: |u (x)|\ge \lambda '\} ) d\lambda d\lambda '. \end{equation}
9.0.30

\begin{equation} =(p_2-1)^{-1}\int _0^\infty (\lambda ')^{p_2-1} \mu (\{ x: |u(x)|\ge \lambda '\} ) d\lambda '. \end{equation}
9.0.31

\begin{equation} \label{eqbesi15} =(p_2-1)^{-1} p_2^{-1}\| u\| _{p_2}^{p_2}\, . \end{equation}
9.0.32

Adding the two estimates 9.0.28 and 9.0.32 gives

\begin{equation} \| M_{\mathcal{B}}u(x)\| _{p_2}^{p_2} \le 2^{p_2+2a} (1+(p_2-1)^{-1})\| u\| _{p_2}^{p_2} = 2^{p_2+2a} p_2(p_2-1)^{-1}\| u\| _{p_2}^{p_2} \, . \end{equation}
9.0.33

With \(a\ge 1\) and \(p_2{\gt}1\), taking the \(p_2\)-th root, we obtain 2.0.44. We turn to the case of general \(1\le p_1{\lt}p_2\). We have

\begin{equation} M_{\mathcal{B},p_1}u=(M_{\mathcal{B}} (|u|^{p_1}))^{\frac1{p_1}}\, . \end{equation}
9.0.34

Applying the special case of 2.0.44 for \(M_{\mathcal{B}}\) gives

\begin{equation} \| M_{\mathcal{B},p_1}u\| _{p_2}= \| M_{\mathcal{B}} (|u|^{p_1})\| _{p_2/p_1}^{\frac1{p_1}} \end{equation}
9.0.35

\begin{equation} \le 2^{2a} (p_2/p_1) (p_2/p_1-1)^{-1} \| (|u|^{p_1})\| _{p_2/p_1}^{\frac1{p_1}} =2^{2a} p_2(p_2-p_1)^{-1}\| u\| _{p_2}\, . \end{equation}
9.0.36

This proves 2.0.44 in general.

Now we construct the operator \(M\) satisfying 2.0.45 and 2.0.46.

Lemma 9.0.2 covering separable space

For each \(r {\gt} 0\), there exists a countable collection \(C(r) \subset X\) of points such that

\[ X \subset \bigcup _{c \in C(r)} B(c, r)\, . \]
Proof

It clearly suffices to construct finite collections \(C(r,k)\) such that

\[ B(o, r2^k) \subset \bigcup _{c \in C(r,k)} B(c,r)\, , \]

since then the collection \(C(r) = \bigcup _{k \in \mathbb {N}} C(r,k)\) has the desired property.

Suppose that \(Y \subset B(o, r2^k)\) is a collection of points such that for all \(y, y' \in Y\) with \(y \ne y'\), we have \(\rho (y,y') \ge r\). Then the balls \(B(y, r/2)\) are pairwise disjoint and contained in \(B(o, r2^{k+1})\). If \(y \in B(o, r)\), then \(B(o, r2^{k+1}) \subset B(y, r2^{k+2})\). Thus, by the doubling property 1.0.5,

\[ \mu (B(y, \frac{r}{2})) \ge 2^{-(k+2)a} \mu (B(o, r2^{k+1}))\, . \]

Thus, we have

\[ \mu (B(o, r2^{k+1})) \ge \sum _{y \in Y} \mu (B(y, \frac{r}{2})) \ge |Y| 2^{-(k+2)a} \mu (B(o, r2^{k+1}))\, . \]

We conclude that \(|Y| \le 2^{(k+2)a}\). In particular, there exists a set \(Y\) of maximal cardinality. Define \(C(r,k)\) to be such a set.

If \(x \in B(o, r2^k)\) and \(x \notin C(r,k)\), then there must exist \(y \in C(r,k)\) with \(\rho (x,y) {\lt} r\). Thus \(C(r,k)\) has the desired property.

For each \(k \in \mathbb {N}\) we choose a countable set \(C(2^k)\) as in the lemma. Define

\[ \mathcal{B}_\infty = \{ B(c, 2^k) \ : \ c \in C(2^k), k \in \mathbb {N}\} \, . \]

By Lemma 9.0.2, this is a countable collection of balls. We choose an enumeration \(\mathcal{B}_\infty = \{ B_1, \dotsc \} \) and define

\[ \mathcal{B}_n = \{ B_1, \dotsc , B_n\} \, . \]

We define

\[ Mw := 2^{2a}\sup _{n \in \mathbb {N}} M_{\mathcal{B}_n}w\, . \]

This function is measurable for each measurable \(w\), since it is a countable supremum of measurable functions. Estimate 2.0.46 follows immediately from 2.0.44 and the monotone convergence theorem.

It remains to show 2.0.45. Let \(B = B(x, r) \subset X\). Let \(k\) be the smallest integer such that \(2^k \ge r\), in particular we have \(2^k {\lt} 2r\). By definition of \(C(2^k)\), there exists \(c \in C(2^k)\) with \(x \in B(c, 2^k)\). By the triangle inequality, we have \(B(c, 2^k) \subset B(x, 4r)\), and hence by the doubling property 1.0.5

\[ \mu (B(c, 2^k)) \le 2^{2a} \mu (B(x,r))\, . \]

It follows that for each \(z \in B(x,r)\)

\begin{align*} \frac{1}{\mu (B(x,r))}\int _{B(x,r)} |w(y)| \, \mathrm{d}\mu (y) & \le \frac{2^{2a}}{\mu (B(c,2^k))}\int _{B(c,2^k)} |w(y)| \, \mathrm{d}\mu (y) \\ & \le Mw(z)\, . \end{align*}

This completes the proof.