Carleson operators on doubling metric measure spaces

6 Proof of the Antichain Operator Proposition

Let an antichain \(\mathfrak {A}\) and functions \(f\), \(g\) as in Proposition 2.0.3 be given. We prove 2.0.30 in Section 6.1 as the geometric mean of two inequalities, each involving one of the two densities. One of these two inequalities will need a careful estimate formulated in Lemma 6.1.5 of the \(TT^*\) correlation between two tile operators. Lemma 6.1.5 will be proven in Section 6.2.

The summation of the contributions of these individual correlations will require a geometric Lemma 6.1.6 counting the relevant tile pairs. Lemma 6.1.6 will be proven in Subsection 6.3.

6.1 The density arguments

We begin with the following crucial disjointedness property of the sets \(E({\mathfrak p})\) with \({\mathfrak p}\in \mathfrak {A}\).

Lemma 6.1.1 tile disjointness
#

Let \({\mathfrak p},{\mathfrak p}'\in \mathfrak {A}\). If there exists an \(x\in X\) with \(x\in E({\mathfrak p})\cap E({\mathfrak p}')\), then \({\mathfrak p}= {\mathfrak p}'\).

Proof

Let \({\mathfrak p},{\mathfrak p}'\) and \(x\) be given. Assume without loss of generality that \({\mathrm{s}}({\mathfrak p})\le {\mathrm{s}}({\mathfrak p}')\). As we have \(x\in E({\mathfrak p})\subset {\mathcal{I}}({\mathfrak p})\) and \(x\in E({\mathfrak p}')\subset {\mathcal{I}}({\mathfrak p}')\) by Definition 2.0.20, we conclude for \(i=1,2\) that \({Q}(x)\in {\Omega }({\mathfrak p})\) and \({Q}(x)\in {\Omega }({\mathfrak p}')\). By 2.0.14 we have \({\Omega }({\mathfrak p}')\subset {\Omega }({\mathfrak p})\). By Definition 2.0.23, we conclude \({\mathfrak p}\le {\mathfrak p}'\). As \(\mathfrak {A}\) is an antichain, we conclude \({\mathfrak p}={\mathfrak p}'\). This proves the lemma.

Let \(\mathcal{B}\) be the collection of balls

\begin{equation} B({\mathrm{c}}({\mathfrak p}), 8D^{{\mathrm{s}}({\mathfrak p})}) \end{equation}
6.1.1

with \({\mathfrak p}\in \mathfrak {A}\) and recall the definition of \(M_{\mathcal{B}}\) from Definition 2.0.41.

Lemma 6.1.2 maximal bound antichain
#

Let \(x\in X\). Then

\begin{equation} \label{hlmbound} | \sum _{{\mathfrak p}\in \mathfrak {A}}T_{{\mathfrak p}} f(x)|\le 2^{107 a^3} M_{\mathcal{B}} f (x) \, . \end{equation}
6.1.2

Proof

Fix \(x\in X\). By Lemma 6.1.1, there is at most one \({\mathfrak p}\in \mathfrak {A}\) such that \(T_{{\mathfrak p}} f(x)\) is not zero. If there is no such \({\mathfrak p}\), the estimate 6.1.2 follows.

Assume there is such a \({\mathfrak p}\). By definition of \(T_{{\mathfrak p}}\) we have \(x\in E({\mathfrak p})\subset {\mathcal{I}}({\mathfrak p})\) and by the squeezing property 2.0.10

\begin{equation} \label{eqtttt0} \rho (x, {\mathrm{c}}({\mathfrak p}))\le 4D^{{\mathrm{s}}({\mathfrak p})}\, . \end{equation}
6.1.3

Let \(y\in X\) with \(K_{{\mathrm{s}}({\mathfrak p})}(x,y)\neq 0\). By Definition 2.0.5 of \(K_{{\mathrm{s}}({\mathfrak p})}\) we have

\begin{equation} \label{supp-Ks1} \frac{1}{4} D^{{\mathrm{s}}({\mathfrak p})-1} \leq \rho (x,y) \leq \frac{1}{2} D^{{\mathrm{s}}({\mathfrak p})}\, . \end{equation}
6.1.4

The triangle inequality with 6.1.3 and 6.1.4 implies

\begin{equation} \rho ({\mathrm{c}}({\mathfrak p}),y)\le 8D^{{\mathrm{s}}({\mathfrak p})}\, . \end{equation}
6.1.5

Using the kernel bound 1.0.14 and the lower bound in 2.1.2 we obtain

\begin{equation} |K_{{\mathrm{s}}({\mathfrak p})}(x,y)|\le \frac{2^{a^3}}{\mu (B(x,\frac14 D^{{{\mathrm{s}}({\mathfrak p})}-1}))}\, . \end{equation}
6.1.6

Using \(D=2^{100a^2}\) and the doubling property 1.0.5 \(5 +100a^2\) times estimates the last display by

\begin{equation} \le \frac{2^{5a+101a^3}}{\mu (B(x, 8D^{{\mathrm{s}}({\mathfrak p})}))}\, . \end{equation}
6.1.7

Using that \(|e({\vartheta })|\) is bounded by \(1\) for every \({\vartheta }\in {\Theta }\), we estimate with the triangle inequality and the above information

\begin{equation} | T_{{\mathfrak p}} f(x)| \le \frac{2^{5a+101 a^3}}{\mu (B(x, 8D^{{\mathrm{s}}({\mathfrak p})}))} \int _{\mu (B(x, 8D^{{\mathrm{s}}({\mathfrak p})}))} |f(y)|\, dy \end{equation}
6.1.8

This together with \(a\ge 1\) proves the Lemma.

Set

\begin{equation} \tilde{q}=\frac{2q}{1+q}\, . \end{equation}
6.1.9

Since \(1{\lt} q\le 2\), we have \(1{\lt}\tilde{q}{\lt}q\le 2\).

Lemma 6.1.3 dens2 antichain
#

We have that

\begin{equation} \label{eqttt9} \left|\int \overline{g(x)} \sum _{{\mathfrak p}\in \mathfrak {A}} T_{{\mathfrak p}} f(x)\, d\mu (x)\right|\le 2^{111a^2}({q}-1)^{-1} \operatorname{\operatorname {dens}}_2(\mathfrak {A})^{\frac1{\tilde{q}}-\frac12} \| f\| _2\| g\| _2\, . \end{equation}
6.1.10

Proof

We have \(f=\mathbf{1}_Ff\). Using Hölder’s inequality, we obtain for each \(x\in B'\) and each \(B'\in \mathcal{B}\) using \(1{\lt}\tilde{q}\le 2\)

\begin{equation} \frac1{\mu (B')}\int _{B'} |f(y)|\, d\mu (y) \end{equation}
6.1.11

\begin{equation} \le \left(\frac1{\mu (B')}\int _{B'} |f(y)|^{\frac{2{\tilde{q}}}{3\tilde{q}-2}}\, d\mu (y)\right)^{\frac32-\frac1{\tilde{q}}} \left(\frac1{\mu (B')}\int _{B'} \mathbf{1}_F(y)\, d\mu (y)\right)^{\frac1{\tilde{q}}-\frac12} \end{equation}
6.1.12

\begin{equation} \le \left(M_{\mathcal{B}} (|f|^{\frac{2{\tilde{q}}}{3{\tilde{q}}-2}})(x)\right)^{\frac32-\frac1{\tilde{q}}} \operatorname{\operatorname {dens}}_2(\mathfrak {A})^{\frac1{\tilde{q}}-\frac12}\, . \end{equation}
6.1.13

Taking the maximum over all \(B'\) containing \(x\), we obtain

\begin{equation} \label{eqttt1} M_{\mathcal{B}}|f|\le M_{\mathcal{B},\frac{2{\tilde{q}}}{3{\tilde{q}}-2} } |f| \operatorname{\operatorname {dens}}_2(\mathfrak {A})^{\frac1{\tilde{q}}-\frac12}\, . \end{equation}
6.1.14

We have with Proposition 2.0.6

\begin{equation} \left\| M_{\mathcal{B}, \frac{2q}{3q-2}} f\right\| _2\le 2^{2a}(3\tilde{q}-2)(2\tilde{q}-2)^{-1}\| f\| _2\, . \end{equation}
6.1.15

Using \(1{\lt}\tilde{q}\le 2\) estimates the last display by

\begin{equation} \label{eqttt2} 2^{2a+2} (\tilde{q}-1)^{-1} \| f\| _2\, . \end{equation}
6.1.16

We obtain with Cauchy-Schwarz and then Lemma 6.1.2

\begin{equation} |\int \overline{g(x)} \sum _{{\mathfrak p}\in \mathfrak {A}} T_{{\mathfrak p}} f(x)\, d\mu (x)| \end{equation}
6.1.17

\begin{equation} \le \| g\| _2 \Big\| \sum _{{\mathfrak p}\in \mathfrak {A}} T_{{\mathfrak p}} f \Big\| _2 \end{equation}
6.1.18

\begin{equation} \le 2^{107a^2}\| g\| _2 \| M_{\mathcal{B}}f \| _2 \end{equation}
6.1.19

With 6.1.14 and 6.1.16 we can estimate the last display by

\begin{equation} \le 2^{107a^2+2a+2}(\tilde{q}-1)^{-1} \| g\| _2 \| f\| _2\operatorname{\operatorname {dens}}_2(\mathfrak {A})^{\frac1{\tilde{q}}-\frac12} \end{equation}
6.1.20

Using \(a\ge 4\) and \((\tilde q - 1)^{-1} = (q+1)/(q-1) \le 3(q-1)^{-1}\) proves the lemma.

Lemma 6.1.4 dens1 antichain

Set \(p:=4a^4\). We have

\begin{equation} \label{eqttt3} \left|\int \overline{g(x)} \sum _{{\mathfrak p}\in \mathfrak {A}} T_{{\mathfrak p}} f(x)\, d\mu (x)\right|\le 2^{150a^3}\operatorname{\operatorname {dens}}_1(\mathfrak {A})^{\frac1{2p}} \| f\| _2\| g\| _2\, . \end{equation}
6.1.21

Proof

We write for the expression inside the absolute values on the left-hand side of 6.1.21

\begin{equation} \sum _{{\mathfrak p}\in \mathfrak {A}}\iint \overline{g(x)} \mathbf{1}_{E({\mathfrak p})}(x) {K_{{\mathrm{s}}({\mathfrak p})}(x,y)}e({Q}(x)(y) - {Q}(x)(x)) f(y)\, d\mu (y)\, d\mu (x) \end{equation}
6.1.22

\begin{equation} =\int \sum _{{\mathfrak p}\in \mathfrak {A}} \overline{T_{{\mathfrak p}} ^*g(y)} f(y)\, d\mu (y) \end{equation}
6.1.23

with the adjoint operator

\begin{equation} \label{eq-tstarwritten} T_{{\mathfrak p}}^*g(y)=\int _{E({\mathfrak p})} \overline{K_{{\mathrm{s}}({\mathfrak p})}(x,y)}e(-{Q}(x)(y)+ {Q}(x)(x))g(x)\, d\mu (x)\, . \end{equation}
6.1.24

We have by expanding the square

\begin{equation} \int \Big|\sum _{{\mathfrak p}\in \mathfrak {A}}T^*_{{\mathfrak p}}g(y)\Big|^2\, d\mu (y)= \int \left(\sum _{{\mathfrak p}\in \mathfrak {A}} T^*_{{\mathfrak p}}g(y)\right) \left(\sum _{{\mathfrak p}'\in \mathfrak {A}}\overline{T^*_{{\mathfrak p}'}g(y)}\right)\, d\mu (y) \end{equation}
6.1.25

\begin{equation} \label{eqtts1} \le \sum _{{\mathfrak p}\in \mathfrak {A}} \sum _{{\mathfrak p}'\in \mathfrak {A}} \Big|\int T^*_{{\mathfrak p}}g(y)\overline{T^*_{{\mathfrak p}'}g(y)}\, d\mu (y)\Big|\, . \end{equation}
6.1.26

We split the sum into the terms with \({\mathrm{s}}({\mathfrak p}')\le {\mathrm{s}}({\mathfrak p})\) and \({\mathrm{s}}({\mathfrak p}){\lt} {\mathrm{s}}({\mathfrak p}')\). Using the symmetry of each summand, we may switch \({\mathfrak p}\) and \({\mathfrak p}'\) in the second sum. Using further positivity of each summand to replace the condition \({\mathrm{s}}({\mathfrak p}'){\lt} {\mathrm{s}}({\mathfrak p})\) by \({\mathrm{s}}({\mathfrak p}')\le {\mathrm{s}}({\mathfrak p})\) in the second sum, we estimate 6.1.26 by

\begin{equation} \label{eqtts2} \le 2 \sum _{{\mathfrak p}\in \mathfrak {A}} \sum _{{\mathfrak p}'\in \mathfrak {A}: {\mathrm{s}}({\mathfrak p}')\le {\mathrm{s}}({\mathfrak p})} \Big|\int T^*_{{\mathfrak p}}g(y)\overline{T^*_{{\mathfrak p}'}g(y)}\, d\mu (y)\Big|\, . \end{equation}
6.1.27

Define for \({\mathfrak p}\in {\mathfrak P}\)

\begin{equation} B({\mathfrak p}):=B({\mathrm{c}}({\mathfrak p}), 15D^{{\mathrm{s}}({\mathfrak p})}) \end{equation}
6.1.28

and define

\begin{equation} \label{eq-Dp-definition} \mathfrak {A}({\mathfrak p}):=\{ {\mathfrak p}'\in \mathfrak {A}: {\mathrm{s}}({\mathfrak p}')\leq {\mathrm{s}}({\mathfrak p}) \land {\mathcal{I}}({\mathfrak p}') \subset B({\mathfrak p})\} . \end{equation}
6.1.29

Note that by the squeezing property 2.0.10 and the doubling property 1.0.5 applied \(6\) times we have

\begin{equation} \label{eqttt4} \mu (B({\mathfrak p}))\le 2^{6a} \mu ({\mathcal{I}}({\mathfrak p}))\, . \end{equation}
6.1.30

Using Lemma 6.1.5 and 6.1.30, we estimate 6.1.27 by

\begin{equation} \label{eqtts3} \le 2^{255a^3+6a+1} \sum _{{\mathfrak p}\in \mathfrak {A}} \int _{E({\mathfrak p})}|g|(y) h({\mathfrak p})\, d\mu (y) \end{equation}
6.1.31

with \(h({\mathfrak p})\) defined as

\begin{equation} \label{def-hp} \frac1{\mu (B({\mathfrak p}))}\int \sum _{{\mathfrak p}'\in \mathfrak {A}({\mathfrak p})} {(1+d_{{\mathfrak p}'}({\mathcal{Q}}({\mathfrak p}’), {\mathcal{Q}}({\mathfrak p}))^{-1/(2a^2+a^3)}}(\mathbf{1}_{E({\mathfrak p}')}|g|)(y')\, d\mu (y')\, . \end{equation}
6.1.32

Note that \(p\geq 4\) since \(a{\gt}4\). We estimate \(h({\mathfrak p})\) as defined in 6.1.32 with Hölder using \(|g|\le \mathbf{1}_G\) and \(E({\mathfrak p}')\subset B({\mathfrak p})\) by

\begin{equation} \frac{\| g\mathbf{1}_{B({\mathfrak p})}\| _{p'}}{\mu (B({\mathfrak p}))} \Big\| \sum _{{\mathfrak p}\in \mathfrak {A}({\mathfrak p})}(1+d_{{\mathfrak p}}({\mathcal{Q}}({\mathfrak p}), {\mathcal{Q}}({\mathfrak p}'))^{-1/(2a^2+a^3)}\mathbf{1}_{E({\mathfrak p})}\mathbf{1}_G\Big\| _{p}\, . \end{equation}
6.1.33

Then we apply Lemma 6.1.6 to estimate this by

\begin{equation} \label{eqttt5} \le 2^{104a} \frac{\| g\mathbf{1}_{B({\mathfrak p})}\| _{p'}}{\mu (B({\mathfrak p}))} \operatorname{\operatorname {dens}}_1(\mathfrak {A})^{\frac1p}\mu (B({\mathfrak p}))^{\frac1p}\, . \end{equation}
6.1.34

Let \(\mathcal{B}'\) be the collection of all balls \(B({\mathfrak p})\) with \({\mathfrak p}\in \mathfrak {A}\). Then for each \({\mathfrak p}\in \mathfrak {A}\) and \(x\in B({\mathfrak p})\) we have by definition 2.0.41 of \(M_{\mathcal{B}',p'}\)

\begin{equation} \| g\mathbf{1}_{B({\mathfrak p})}\| _{p'}\le \mu (B({\mathfrak p}))^{\frac1{p'}} M_{\mathcal{B}',p'}g(x) \, . \end{equation}
6.1.35

Hence we can estimate 6.1.34 by

\begin{equation} \label{eqttt5b} \le 2^{104a} (M_{\mathcal{B}', p'}g(x)) \operatorname{\operatorname {dens}}_1(\mathfrak {A})^{\frac1p}\, . \end{equation}
6.1.36

With this estimate of \(h({\mathfrak p})\), using \(E({\mathfrak p})\subset B({\mathfrak p})\) by construction of \(B({\mathfrak p})\), we estimate 6.1.31 by

\begin{equation} \label{eqtts4} \le 2^{255a^3+110a + 1} { \operatorname{\operatorname {dens}}_1(\mathfrak {A})^{\frac1p}}\sum _{{\mathfrak p}\in \mathfrak {A}} \int _{E({\mathfrak p})}|g|(y)M_{\mathcal{B}', p'}g(y) \, dy\, . \end{equation}
6.1.37

Using Lemma 6.1.1, the last display is observed to be

\begin{equation} \label{eqtts4a} = 2^{255a^3+110a + 1} {\operatorname{\operatorname {dens}}_1(\mathfrak {A})^{\frac1p}} \int |g|(y)(M_{\mathcal{B}', p'}g)(y) \, dy\, . \end{equation}
6.1.38

Applying Cauchy-Schwarz and using Proposition 2.0.6estimates the last display by

\begin{equation} 2^{255a^3+110a + 1} \operatorname{\operatorname {dens}}_1(\mathfrak {A})^{\frac1p} \| g\| _2 \| M_{\mathcal{B}', p'} g\| _2 \end{equation}
6.1.39

\begin{equation} \le 2^{255a^3+110a + 3}\frac{2}{2-p'} \operatorname{\operatorname {dens}}_1(\mathfrak {A})^{\frac1p}\| g\| _2 ^2\, . \end{equation}
6.1.40

Using \(p{\gt}4\) and thus \(1{\lt}p'{\lt}\frac43\), we estimate the last display by

\begin{equation} \le 2^{255a^3+110a + 5} \operatorname{\operatorname {dens}}_1(\mathfrak {A})^{\frac1p} \| g\| _2^2\, . \end{equation}
6.1.41

Now Lemma 6.1.4 follows by applying Cauchy-Schwarz on the left-hand side and using \(a\ge 4\).

The following basic \(TT^*\) estimate will be proved in Section 6.2.

Lemma 6.1.5 tile correlation

Let \({\mathfrak p}, {\mathfrak p}'\in {\mathfrak P}\) with \({\mathrm{s}}({{\mathfrak p}’})\leq {\mathrm{s}}({{\mathfrak p}})\). Then

\begin{equation} \label{eq-basic-TT*-est} \left|\int T^*_{{\mathfrak p}'}g\overline{T^*_{{\mathfrak p}}g}\right| \end{equation}
6.1.42

\begin{equation} \le 2^{255a^3}\frac{(1+d_{{\mathfrak p}'}({\mathcal{Q}}({\mathfrak p}'), {\mathcal{Q}}({\mathfrak p}))^{-1/(2a^2+a^3)}}{\mu ({\mathcal{I}}({\mathfrak p}))}\int _{E({\mathfrak p}')}|g|\int _{E({\mathfrak p})}|g|\, . \end{equation}
6.1.43

Moreover, the term 6.1.42 vanishes unless

\begin{equation} {\mathcal{I}}({\mathfrak p}') \subset B({\mathrm{c}}({\mathfrak p}), 15D^{{\mathrm{s}}({\mathfrak p})})\, . \end{equation}
6.1.44

The following lemma will be proved in Section 6.3.

Lemma 6.1.6 antichain tile count

Set \(p:=4a^4\) and let \(p'\) be the dual exponent of \(p\), that is \(1/p+1/p'=1\). For every \({\vartheta }\in {\Theta }\) and every subset \(\mathfrak {A}'\) of \(\mathfrak {A}\) we have

\begin{equation} \label{eq-antichain-Lp} \Big\| \sum _{{\mathfrak p}\in \mathfrak {A}'}(1+d_{{\mathfrak p}}({\mathcal{Q}}({\mathfrak p}), {\vartheta }))^{-1/(2a^2+a^3)}\mathbf{1}_{E({\mathfrak p})}\mathbf{1}_G\Big\| _{p} \end{equation}
6.1.45

\begin{equation} \le 2^{104a}\operatorname{\operatorname {dens}}_1(\mathfrak {A})^{\frac1p}\mu \left(\cup _{{\mathfrak p}\in \mathfrak {A}'}I_{{\mathfrak p}}\right)^{\frac1p}\, . \end{equation}
6.1.46

We have

\begin{equation} \left(\frac1{\tilde{q}} -\frac12\right) (2-q)= \frac1q -\frac12\, . \end{equation}
6.1.47

Multiplying the \((2-q)\)-th power of 6.1.10 and the \((q-1)\)-th power of 6.1.21 and estimating gives after simplification of some factors

\begin{equation} \label{eqttt8} \Big|\int \overline{g(x)} \sum _{{\mathfrak p}\in \mathfrak {A}} T_{{\mathfrak p}} f(x)\, d\mu (x)\Big| \end{equation}
6.1.48

\begin{equation} \le 2^{150a^3}({q}-1)^{-1} \operatorname{\operatorname {dens}}_1(\mathfrak {A})^{\frac{q-1}{2p}}\operatorname{\operatorname {dens}}_2(\mathfrak {A})^{\frac1{q}-\frac12} \| f\| _2\| g\| _2\, . \end{equation}
6.1.49

With the definition of \(p\), this implies Proposition 2.0.3.

6.2 Proof of the Tile Correlation Lemma

The next lemma prepares an application of Proposition 2.0.5.

Lemma 6.2.1 correlation kernel bound

Let \(-S\le s_1\le s_2\le S\) and let \(x_1,x_2\in X\). Define

\begin{equation} \varphi (y) := \overline{K_{s_1}(x_1, y)} K_{s_2}(x_2, y) \, . \end{equation}
6.2.1

If \(\varphi (y)\neq 0\), then

\begin{equation} \label{eqt10} y\in B(x_1, D^{s_1})\, . \end{equation}
6.2.2

Moreover, we have with \(\tau = 1/a\)

\begin{equation} \label{eqt11} \| \varphi \| _{C^\tau (B(x_1, D^{s_1}))}\le \frac{2^{254 a^3}}{\mu (B(x_1, D^{s_1}))\mu (B(x_2, D^{s_2}))} \, . \end{equation}
6.2.3

Proof

If \(\varphi (y)\) is not zero, then \(K_{s_1}(x_1, y)\) is not zero and thus 2.1.2 gives 6.2.2.

We next have for \(y\) with 2.1.3

\begin{equation} \label{suppart} |\varphi (y)|\le \frac{2^{204 a^3}}{\mu (B(x_1, D^{s_1}))\mu (B(x_2, D^{s_2}))} \end{equation}
6.2.4

and for \(y'\neq y\) additionally with 2.1.4

\begin{equation} |\varphi (y)-\varphi (y')| \end{equation}
6.2.5

\begin{equation} \le |K_{s_1}(x_1,y)-K_{s_1}(x_1,y'))|| K_{s_2}(x_2, y)| \end{equation}
6.2.6

\begin{equation} +|K_{s_1}(x_1, y')| |K_{s_2}(x_2, y) - K_{s_2}(x_2, y'))| \end{equation}
6.2.7

\begin{equation} \le \frac{2^{252 a^3}}{\mu (B(x_1, D^{s_1}))\mu (B(x_2, D^{s_2}))} \left(\left(\frac{ \rho (y,y')}{D^{s_1}}\right)^{1/a}+ \left(\frac{ \rho (y,y')}{D^{s_2}}\right)^{1/a}\right) \end{equation}
6.2.8

\begin{equation} \label{holderpart} \le \frac{2^{253 a^3}}{\mu (B(x_1, D^{s_1}))\mu (B(x_2, D^{s_2}))} \left(\frac{ \rho (y,y')}{D^{s_1}}\right)^{1/a}\, . \end{equation}
6.2.9

Adding the estimates 6.2.4 and 6.2.9 gives 6.2.3. This proves the lemma.

The next lemma is a geometric estimate for two tiles.

Lemma 6.2.2

Let \({\mathfrak p}_1, {\mathfrak p}_2\in {\mathfrak P}\) with \({\mathrm{s}}({{\mathfrak p}_1})\leq {\mathrm{s}}({{\mathfrak p}_2})\). For each \(x_1\in E({\mathfrak p}_1)\) and \(x_2\in E({\mathfrak p}_2)\) we have

\begin{equation} \label{tgeo} 1+d_{{\mathfrak p}_1}({\mathcal{Q}}({\mathfrak p}_1), {\mathcal{Q}}({\mathfrak p}_2))\le 2^{3a}(1 + d_{B(x_1, D^{{\mathrm{s}}({\mathfrak p}_1)})}({Q}(x_1),{Q}(x_2)))\, . \end{equation}
6.2.10

Proof

Let \(i\in \{ 1,2\} \). By Definition 2.0.20 of \(E\), we have \({Q}(x_i)\in {\Omega }({\mathfrak p}_i)\) With 2.0.15 we then conclude

\begin{equation} \label{dponetwo} d_{{\mathfrak p}_i}({Q}(x_i),{\mathcal{Q}}({\mathfrak p}_i))\le 1\, . \end{equation}
6.2.11

We have \({\mathcal{I}}({\mathfrak p}_1)\subset {\mathcal{I}}({\mathfrak p}_2)\) by 2.0.8. Using Lemma 2.1.2 it follows that

\begin{equation} \label{tgeo0.5} d_{{\mathfrak p}_1}({Q}(x_2), {\mathcal{Q}}({\mathfrak p}_2)) \le 1\, . \end{equation}
6.2.12

By the triangle inequality, we obtain from 6.2.11 and 6.2.12

\begin{equation} \label{tgeo1} 1+d_{{\mathfrak p}_1}({\mathcal{Q}}({\mathfrak p}_1), {\mathcal{Q}}({\mathfrak p}_2))\le 3 +d_{{\mathfrak p}_1}({Q}(x_1), {Q}(x_2))\, . \end{equation}
6.2.13

As \(x_1\in {\mathcal{I}}({\mathfrak p}_1)\) by Definition 2.0.20 of \(E\), we have by the squeezing property 2.0.10

\begin{equation} d(x_1,{\mathrm{c}}({\mathfrak p}_1))\le 4D^{{\mathrm{s}}({\mathfrak p}_1)} \end{equation}
6.2.14

and thus by 2.0.10 again and the triangle inequality

\begin{equation} {\mathcal{I}}({\mathfrak p}_1)\subset B(x_1,8D^{{\mathrm{s}}({\mathfrak p}_1)})\, . \end{equation}
6.2.15

We thus estimate the right-hand side of 6.2.13 with monotonicity 1.0.9 of the metrics \(d_B\) by

\begin{equation} \label{tgeo1.5} \le 3+d_{B(x_1,8D^{{\mathrm{s}}({\mathfrak p}_1)})}({Q}(x_1), {Q}(x_2))\, . \end{equation}
6.2.16

This is further estimated by applying the doubling property 1.0.8 three times by

\begin{equation} \label{tgeo2} \le 3+2^{3a}d_{B_1(x_1, D^{{\mathrm{s}}({\mathfrak p}_1)})}({Q}(x_1), {Q}(x_2))\, . \end{equation}
6.2.17

Now 6.2.10 follows with \(a\ge 1\).

Lemma 6.2.3 tile range support

For each \({\mathfrak p}\in {\mathfrak P}\), and each \(y\in X\), we have that

\begin{equation} \label{tstargnot0} T_{{\mathfrak p}}^* g(y)\neq 0 \end{equation}
6.2.18

implies

\begin{equation} \label{ynotfar} y\in B({\mathrm{c}}({\mathfrak p}),5D^{{\mathrm{s}}({\mathfrak p})})\, . \end{equation}
6.2.19

Proof

Fix \({\mathfrak p}\) and \(y\) with 6.2.18. Then there exists \(x\in E({\mathfrak p})\) with

\begin{equation} \overline{K_{{\mathrm{s}}({\mathfrak p})}(x,y)}e(-{Q}(x)(y) +{Q}(x)(x))g(x) \neq 0\, . \end{equation}
6.2.20

As \(E({\mathfrak p})\subset {\mathcal{I}}({\mathfrak p})\) and by the squeezing property 2.0.10, we have

\begin{equation} \rho (x,{\mathrm{c}}({\mathfrak p}))\le 4D^{{\mathrm{s}}({\mathfrak p})}\, . \end{equation}
6.2.21

As \(K_{{\mathrm{s}}({\mathfrak p})}(x,y)\neq 0\), we have by 2.1.2 that

\begin{equation} \rho (x,y)\le \frac12 D^{{\mathrm{s}}({\mathfrak p})}\, . \end{equation}
6.2.22

Now 6.2.19 follows by the triangle inequality.

We now prove Lemma 6.1.5. We begin with 6.1.42.

We expand the left-hand side of 6.1.42 as

\begin{equation} \label{tstartstar} \left|\int \int _{E({\mathfrak p}_1)} \overline{K_{{\mathrm{s}}({\mathfrak p}_1)}(x_1,y)}e(-{Q}(x_1)(y)+ {Q}(x_1)(x_1))g(x_1)\, d\mu (x_1) \right. \end{equation}
6.2.23

\begin{equation} \times \left.\int _{E({\mathfrak p}_2)} {K_{{\mathrm{s}}({\mathfrak p}_2)}(x_2,y)}e({Q}(x_2)(y) -{Q}(x_2)(x_2))\overline{g(x_2)}\, d\mu (x_2)\, d\mu (y)\right|\, . \end{equation}
6.2.24

By Fubini and the triangle inequality and the fact \(|e({Q}(x_i)(x_i))|=1\) for \(i=1,2\), we can estimate 6.2.23 from above by

\begin{equation} \label{eqa1} \int _{E({\mathfrak p}_1)} \int _{E({\mathfrak p}_2)} {\bf I}(x_1, x_2)\, d\mu (x_1)d\mu (x_2)\, . \end{equation}
6.2.25

with

\begin{equation} {\bf I}(x_1, x_2):= \left|\int e(-{Q}(x_1)(y)+{Q}(x_2)(y))\varphi _{x_1,x_2}(y) d\mu (y) \, g(x_1)g(x_2)\right| \end{equation}
6.2.26

We estimate for fixed \(x_1\in E({\mathfrak p}_1)\) and \(x_2\in E({\mathfrak p}_2)\) the inner integral of 6.2.25 with Proposition 2.0.5. The function \(\varphi :=\varphi _{x_1,x_2}\) satisfies the assumptions of Proposition 2.0.5 with \(z = x_1\) and \(R = D^{s_1}\) by Lemma 6.2.1. We obtain with \(B':= B(x_1, D^{{\mathrm{s}}({\mathfrak p}_1)})\),

\begin{equation*} {\bf I}(x_1, x_2) \le 2^{8a} \mu (B’) \| {\varphi }\| _{C^\tau (B')} (1 + d_{B'}({Q}(x_1),{Q}(x_2)))^{-1/(2a^2+a^3)} \end{equation*}

\begin{equation} \label{eqa1.5} \le \frac{2^{254a^3+8a}}{\mu (B(x_2, D^{{\mathrm{s}}({\mathfrak p}_2)}))} (1 + d_{B'}({Q}(x_1),{Q}(x_2)))^{-1/(2a^2+a^3)}\, . \end{equation}
6.2.27

Using Lemma 6.2.2 and \(a\ge 1\) estimates 6.2.27 by

\begin{equation} \label{eqa2} \le \frac{2^{254a^3 + 8a + 1}}{\mu (B(x_2, D^{{\mathrm{s}}({\mathfrak p}_2)}))} (1+d_{{\mathfrak p}_1}({\mathcal{Q}}({\mathfrak p}_1), {\mathcal{Q}}({\mathfrak p}_2)))^{-1/(2a^2+a^3)}\, . \end{equation}
6.2.28

As \(x_2\in {\mathcal{I}}({\mathfrak p}_2)\) by Definition 2.0.20 of \(E\), we have by 2.0.10

\begin{equation} \rho (x_2,{\mathrm{c}}({\mathfrak p}_2))\le 4D^{{\mathrm{s}}({\mathfrak p}_2)} \end{equation}
6.2.29

and thus by 2.0.10 again and the triangle inequality

\begin{equation} {\mathcal{I}}({\mathfrak p}_2)\subset B(x_2,8D^{{\mathrm{s}}({\mathfrak p}_2)})\, . \end{equation}
6.2.30

Using three iterations of the doubling property 1.0.5 give

\begin{equation} \mu ({\mathcal{I}}({\mathfrak p}_2))\le 2^{3a}\mu (B(x_2,D^{{\mathrm{s}}({\mathfrak p}_2)}))\, . \end{equation}
6.2.31

With \(a\ge 1\) and 6.2.28 we conclude 6.1.42.

Now assume the left-hand side of 6.1.42 is not zero. There is a \(y\in X\) with

\begin{equation} T^*_{{\mathfrak p}}g(y)\overline{T^*_{{\mathfrak p}'}g(y)}\neq 0 \end{equation}
6.2.32

By the triangle inequality and Lemma 6.2.3, we conclude

\begin{equation} \rho ({\mathrm{c}}({\mathfrak p}),{\mathrm{c}}({\mathfrak p}'))\le \rho ({\mathrm{c}}({\mathfrak p}),y) +\rho ({\mathrm{c}}({\mathfrak p}'),y) \le 5D^{{\mathrm{s}}({\mathfrak p})}+5D^{{\mathrm{s}}({\mathfrak p}')}\le 10 D^{{\mathrm{s}}({\mathfrak p})}\, . \end{equation}
6.2.33

By the squeezing property 2.0.10 and the triangle inequality, we conclude

\begin{equation} {\mathcal{I}}({\mathfrak p}') \subset B({\mathrm{c}}({\mathfrak p}), 15D^{{\mathrm{s}}({\mathfrak p})})\, . \end{equation}
6.2.34

This completes the proof of Lemma 6.1.5.

6.3 Proof of the Antichain Tile Count Lemma

Lemma 6.3.1 tile reach

Let \({\vartheta }\in {\Theta }\) and \(N\ge 0\) be an integer. Let \({\mathfrak p}, {\mathfrak p}'\in {\mathfrak P}\) with

\begin{equation} \label{eqassumedismfa} d_{{\mathfrak p}}({\mathcal{Q}}({\mathfrak p}), {\vartheta }))\le 2^N\, \end{equation}
6.3.1

\begin{equation} \label{eqassumedismfap} d_{{\mathfrak p}'}({\mathcal{Q}}({\mathfrak p}'), {\vartheta }))\le 2^N\, . \end{equation}
6.3.2

Assume \({\mathcal{I}}({\mathfrak p})\subset {\mathcal{I}}({\mathfrak p}')\) and \({\mathrm{s}}({\mathfrak p}){\lt}{\mathrm{s}}({\mathfrak p}')\). Then

\begin{equation} \label{lp'lp''}2^{N+2}{\mathfrak p}\lesssim 2^{N+2} {\mathfrak p}'\, . \end{equation}
6.3.3

Proof

By Lemma 2.1.2, we have

\begin{equation} d_{{\mathfrak p}}({\mathcal{Q}}({\mathfrak p}'),{\vartheta }) \le d_{{\mathfrak p}'}({\mathcal{Q}}({\mathfrak p}'),{\vartheta }) \le 2^{N} \, . \end{equation}
6.3.4

Together with 6.3.1 and the triangle inequality, we obtain

\begin{equation} \label{eqdistqpqp} d_{{\mathfrak p}'}({\mathcal{Q}}({\mathfrak p}'),{\mathcal{Q}}({\mathfrak p}))\le 2^{N+1} \, . \end{equation}
6.3.5

Now assume

\begin{equation} {\vartheta }'\in B_{{\mathfrak p}'}({\mathcal{Q}}({\mathfrak p}'),2^{N+2}). \end{equation}
6.3.6

By the doubling property 1.0.8, applied five times, we have

\begin{equation} \label{ageo1} d_{B({\mathrm{c}}({\mathfrak p}'),8D^{{\mathrm{s}}({\mathfrak p}')})}({\mathcal{Q}}({\mathfrak p}'),{\vartheta }') {\lt} 2^{5a+N+2}\, . \end{equation}
6.3.7

We have by the squeezing property 2.0.10

\begin{equation} {\mathrm{c}}({\mathfrak p})\in B({\mathrm{c}}({\mathfrak p}'),4D^{{\mathrm{s}}({\mathfrak p}')})\, . \end{equation}
6.3.8

Hence by the triangle inequality

\begin{equation} B({\mathrm{c}}({\mathfrak p}), 4D^{{\mathrm{s}}({\mathfrak p}')}) \subset B({\mathrm{c}}({\mathfrak p}'),8D^{{\mathrm{s}}({\mathfrak p}')})\, . \end{equation}
6.3.9

Together with 6.3.7 and monotonicity 1.0.9 of \(d\)

\begin{equation} d_{B({\mathrm{c}}({\mathfrak p}),4D^{{\mathrm{s}}({\mathfrak p}')})}({\mathcal{Q}}({\mathfrak p}'),{\vartheta }') {\lt} 2^{5a+N+2}\, . \end{equation}
6.3.10

Using the doubling property 1.0.10 \(5a+2\) times gives

\begin{equation} d_{B({\mathrm{c}}({\mathfrak p}),2^{2-5a^2-2a}D^{{\mathrm{s}}({\mathfrak p}')})}({\mathcal{Q}}({\mathfrak p}'),{\vartheta }') {\lt} 2^{N}\, . \end{equation}
6.3.11

Using \({\mathrm{s}}({\mathfrak p}){\lt}{\mathrm{s}}({\mathfrak p}')\) and \(D=2^{100a^2}\) and \(a\ge 4\) gives

\begin{equation} d_{{\mathfrak p}}({\mathcal{Q}}({\mathfrak p}'),{\vartheta }') {\lt} 2^{N}\, . \end{equation}
6.3.12

With the triangle inequality and 6.3.5,

\begin{equation} d_{{\mathfrak p}}({\mathcal{Q}}({\mathfrak p}),{\vartheta }') {\lt} 2^{N+2}\, . \end{equation}
6.3.13

This shows

\begin{equation} B_{{\mathfrak p}'}({\mathcal{Q}}({\mathfrak p}'),2^{N+2})\subset B_{{\mathfrak p}}({\mathcal{Q}}({\mathfrak p}),2^{N+2})\, . \end{equation}
6.3.14

This implies 6.3.3 and completes the proof of the lemma.

For \({\vartheta }\in {\Theta }\) and \(N\ge 0\) define

\begin{equation} \label{eqantidefap} \mathfrak {A}_{{\vartheta },N}:=\{ {\mathfrak p}\in \mathfrak {A}: 2^{N}\le 1+d_{{\mathfrak p}}({\mathcal{Q}}({\mathfrak p}), {\vartheta })\le 2^{N+1}\} \, . \end{equation}
6.3.15

Lemma 6.3.2 stack density

Let \({\vartheta }\in {\Theta }\), \(N\ge 0\) and \(L\in \mathcal{D}\). Then

\begin{equation} \label{eqanti-1} \sum _{{\mathfrak p}\in \mathfrak {A}_{{\vartheta },N}:{\mathcal{I}}({\mathfrak p})=L}\mu (E({\mathfrak p})\cap G)\le 2^{a(N+5)}\operatorname{\operatorname {dens}}_1(\mathfrak {A})\mu (L)\, . \end{equation}
6.3.16

Proof

Let \({\vartheta },N,L\) be given and set

\begin{equation} \mathfrak {A}':=\{ {\mathfrak p}\in \mathfrak {A}_{{\vartheta },N}:{\mathcal{I}}({\mathfrak p})=L\} \, . \end{equation}
6.3.17

Let \({\mathfrak p}\in \mathfrak {A}'\). We have by Definition 2.0.28 using \(\lambda =2\) and the squeezing property 2.0.15

\begin{equation} \label{eqanti-3} \mu (E({\mathfrak p})\cap G)\le \mu (E_2(2, {\mathfrak p}))\le 2^{a}\operatorname{\operatorname {dens}}_1(\mathfrak {A}')\mu (L)\, . \end{equation}
6.3.18

By the covering property 1.0.11, applied \(N+4\) times, there is a collection \({\Theta }'\) of at most \(2^{a(N+4)}\) elements such that

\begin{equation} \label{eqanti-4} B_{{\mathfrak p}}({\vartheta }, 2^{N+1})\subset \bigcup _{{\vartheta }'\in {\Theta }'} B_{{\mathfrak p}}({\vartheta }', 0.2)\, . \end{equation}
6.3.19

As each \({\mathcal{Q}}({\mathfrak p})\) with \({\mathfrak p}\in \mathfrak {A}_{{\vartheta },N}\) is contained in the left-hand-side of 6.3.19 by definition, it is in at least one \(B_{{\mathfrak p}}({\vartheta }', 0.2)\) with \({\vartheta }'\in {\Theta }'\).

For two different \({\mathfrak p},{\mathfrak p}'\in \mathfrak {A}'\), we have by 2.0.13 that \({\Omega }({\mathfrak p})\) and \({\Omega }({\mathfrak p}')\) are disjoint and thus by the squeezing property 2.0.15 we have for every \({\vartheta }'\in {\Theta }'\)

\begin{equation} {\vartheta }'\not\in B_{{\mathfrak p}}({\mathcal{Q}}({\mathfrak p}), 0.2)\cap B_{{\mathfrak p}}({\mathcal{Q}}({\mathfrak p}'), 0.2)\, . \end{equation}
6.3.20

Hence at most one of \({\mathcal{Q}}({\mathfrak p})\) and \({\mathcal{Q}}({\mathfrak p})\) is in \(B_{{\mathfrak p}}({\vartheta }', 0.2)\). It follows that there are at most \(2^{a(N+4)}\) elements in \(\mathfrak {A}'\). Adding 6.3.18 over \(\mathfrak {A}'\) proves 6.3.16.

Lemma 6.3.3 local antichain density

Let \({\vartheta }\in {\Theta }\) and \(N\) be an integer. Let \({\mathfrak p}_{{\vartheta }}\) be a tile with \({\vartheta }\in {\Omega }({\mathfrak p}_{{\vartheta }})\). Then we have

\begin{equation} \label{eqanti-0.5} \sum _{{\mathfrak p}\in \mathfrak {A}_{{\vartheta },N}: {\mathrm{s}}({\mathfrak p}_{{\vartheta }}){\lt}{\mathrm{s}}({\mathfrak p})}\mu (E({\mathfrak p})\cap G \cap {\mathcal{I}}({\mathfrak p}_{{\vartheta }})) \le \mu (E_2(2^{N+3},{\mathfrak p}_{{\vartheta }})) \, . \end{equation}
6.3.21

Proof

Let \({\mathfrak p}\) be any tile in \(\mathfrak {A}_{{\vartheta },N}\) with \({\mathrm{s}}({\mathfrak p}_{{\vartheta }}){\lt}{\mathrm{s}}({\mathfrak p})\). By definition of \(E\), the tile contributes zero to the sum on the left-hand side of 6.3.21 unless \({\mathcal{I}}({\mathfrak p})\cap {\mathcal{I}}({\mathfrak p}_{{\vartheta }}) \neq \emptyset \), which we may assume. With \({\mathrm{s}}({\mathfrak p}_{{\vartheta }}){\lt}{\mathrm{s}}({\mathfrak p})\) and the dyadic property 2.0.8 we conclude \({\mathcal{I}}({\mathfrak p}_{{\vartheta }})\subset {\mathcal{I}}({\mathfrak p})\). By the squeezing property 2.0.15, we conclude from \({\vartheta }\in {\Omega }({\mathfrak p}_{{\vartheta }})\) that

\begin{equation} {\vartheta }\in B({\mathcal{Q}}({\mathfrak p}_{{\vartheta }}), 1)\, . \end{equation}
6.3.22

We conclude from \({\mathfrak p}\in \mathfrak {A}_{{\vartheta },N}\) that

\begin{equation} {\vartheta }\in B({\mathcal{Q}}({\mathfrak p}), 2^{N+1})\, . \end{equation}
6.3.23

With Lemma 6.3.1, we conclude

\begin{equation} 2^{N+3}{\mathfrak p}_{{\vartheta }} \lesssim 2^{N+3}{\mathfrak p}\, . \end{equation}
6.3.24

By Definition 2.0.27 of \(E_2\), we conclude

\begin{equation} E({\mathfrak p})\cap G \subset E_2(2^{N+3},{\mathfrak p}_{{\vartheta }})\, . \end{equation}
6.3.25

Using disjointedness of the various \(E({\mathfrak p})\) with \({\mathfrak p}\in \mathfrak {A}\) by Lemma 6.1.1, we obtain 6.3.21. This proves the lemma.

Lemma 6.3.4 global antichain density

Let \({\vartheta }\in {\Theta }\) and let \(N\ge 0\) be an integer. Then we have

\begin{equation} \label{eqanti00} \sum _{{\mathfrak p}\in \mathfrak {A}_{{\vartheta },N}}\mu (E({\mathfrak p})\cap G) \le 2^{101a^3+Na}\operatorname{\operatorname {dens}}_1(\mathfrak {A})\mu \left(\cup _{{\mathfrak p}\in \mathfrak {A}}I_{{\mathfrak p}}\right)\, . \end{equation}
6.3.26

Proof

Fix \({\vartheta }\) and \(N\). Let \(\mathfrak {A}'\) be the set of \({\mathfrak p}\in \mathfrak {A}_{{\vartheta },N}\) such that \({\mathcal{I}}({\mathfrak p})\cap G\) is not empty.

Let \(\mathcal{L}\) be the collection of dyadic cubes \(I\in \mathcal{D}\) such that \(I\subset {\mathcal{I}}({\mathfrak p})\) for some \({\mathfrak p}\in \mathfrak {A}'\) and if \({\mathcal{I}}({\mathfrak p})\subset I\) for some \({\mathfrak p}\in \mathfrak {A}'\), then \({\mathrm{s}}({\mathfrak p})=-S\). By 2.0.7, for each \({\mathfrak p}\in \mathfrak {A}'\) and each \(x\in {\mathcal{I}}({\mathfrak p})\cap G\), there is \(I\in \mathcal{D}\) with \(s(I)=-S\) and \(x\in I\). By 2.0.8, we have \(I\subset {\mathcal{I}}({\mathfrak p})\). Hence

\begin{equation} {\mathcal{I}}({\mathfrak p})\subset \bigcup \{ I\in \mathcal{D}: s(I)=-S, I\subset {\mathcal{I}}({\mathfrak p})\} \subset \bigcup \mathcal{L}\, . \end{equation}
6.3.27

As each \(I\in \mathcal{L}\) satisfies \(I\subset {\mathcal{I}}({\mathfrak p})\) for some \({\mathfrak p}\) in \(\mathfrak {A’}\), we conclude

\begin{equation} \bigcup \mathcal{L}=\bigcup _{{\mathfrak p}\in \mathfrak {A}'}{\mathcal{I}}({\mathfrak p})\, . \end{equation}
6.3.28

Let \(\mathcal{L}^*\) be the set of maximal elements in \(\mathcal{L}\) with respect to set inclusion. By 2.0.8, the elements in \(\mathcal{L}^*\) are pairwise disjoint and we have

\begin{equation} \label{eqdecAprime} \bigcup \mathcal{L}^*=\bigcup _{{\mathfrak p}\in \mathfrak {A}'}{\mathcal{I}}({\mathfrak p})\, . \end{equation}
6.3.29

Using the partition 6.3.29 into elements of \(\mathcal{L}\) in 6.3.30, it suffices to show for each \(L\in \mathcal{L}^*\)

\begin{equation} \label{eqanti0} \sum _{{\mathfrak p}\in \mathfrak {A}'}\mu (E({\mathfrak p})\cap G \cap L) \le 2^{101a^3+aN} \operatorname{\operatorname {dens}}_1(\mathfrak {A})\mu (L)\, . \end{equation}
6.3.30

Fix \(L\in \mathcal{L}^*\). By definition of \(L\), there exists an element \({\mathfrak p}'\in \mathfrak {A}'\) such that \(L\subset {\mathcal{I}}({\mathfrak p}')\). Pick such an element \({\mathfrak p}'\) in \(\mathfrak {A}\) with minimal \({\mathrm{s}}({\mathfrak p}')\). As \({\mathcal{I}}({\mathfrak p}')\not\subset L\) or \(s(L) = -S\) by definition of \(L\), we have with 2.0.8 that \(s(L){\lt} {\mathrm{s}}({\mathfrak p}')\) or \(s(L) = -S\). In particular \(s(L){\lt}S\), thus \(L \ne I_0\) and hence by 2.0.9 there exists a cube \(J \in \mathcal{D}\) with \(L \subsetneq J\). By 2.0.7, there is an \(L'\in \mathcal{D}\) with \(s(L')=s(L)+1\) and \(c(L)\in L'\). By 2.0.8, we have \(L\subset L'\).

We split the left-hand side of 6.3.30 as

\begin{equation} \label{eqanti1} \sum _{{\mathfrak p}\in \mathfrak {A}':{\mathcal{I}}({\mathfrak p})=L'}\mu (E({\mathfrak p})\cap G\cap L) \end{equation}
6.3.31

\begin{equation} \label{eqanti2} + \sum _{{\mathfrak p}\in \mathfrak {A}':{\mathcal{I}}({\mathfrak p})\neq L'}\mu (E({\mathfrak p})\cap G\cap L)\, , \end{equation}
6.3.32

We first estimate 6.3.31 with Lemma 6.3.2 by

\begin{equation} \label{equanti1.5} \le \sum _{{\mathfrak p}\in \mathfrak {A}':{\mathcal{I}}({\mathfrak p})=L'}\mu (E({\mathfrak p})\cap G\cap L')\le 2^{a(N+5)}\operatorname{\operatorname {dens}}_1(\mathfrak {A})\mu (L')\, . \end{equation}
6.3.33

We turn to 6.3.32. Consider the element \({\mathfrak p}'\in \mathfrak {A}'\) as above with \(L\subset {\mathcal{I}}({\mathfrak p}')\) and \(s(L){\lt}{\mathrm{s}}({\mathfrak p}')\). As \(L\subset L'\) and \(s(L')=s(L)+1\), we conclude with the dyadic property that \(L'\subset {\mathcal{I}}({\mathfrak p}')\). By maximality of \(L\), we have \(L'\not\in \mathcal{L}\). This together with the existence of the given \({\mathfrak p}'\in \mathfrak {A}\) with \(L'\subset {\mathcal{I}}({\mathfrak p}')\) shows by definition of \(\mathcal{L}\) that there exists \({\mathfrak p}''\in \mathfrak {A}'\) with \({\mathcal{I}}({\mathfrak p}'')\subset L'\).

By the covering property 2.0.13, there exists a unique \({\mathfrak p}_{{\vartheta }}\) with

\begin{equation*} {\mathcal{I}}({\mathfrak p}_{{\vartheta }})=L’ \end{equation*}

such that \({\vartheta }\in {\Omega }({\mathfrak p}_{{\vartheta }})\). Note that

\begin{equation} {\vartheta }\in B({\mathcal{Q}}({\mathfrak p}_{{\vartheta }}), 1) \end{equation}
6.3.34

and as \({\mathfrak p}'' \in \mathfrak {A}_{{\vartheta },N}\) that

\begin{equation} {\vartheta }\in B({\mathcal{Q}}({\mathfrak p}''), 2^{N+1})\, . \end{equation}
6.3.35

By Lemma 6.3.1, we conclude

\begin{equation} 2^{N+3}{\mathfrak p}'' \lesssim 2^{N+3}{\mathfrak p}_{{\vartheta }} \, . \end{equation}
6.3.36

As \({\mathfrak p}''\in \mathfrak {A}'\), we have by Definition 2.0.28 of \(\operatorname{\operatorname {dens}}_1\) that

\begin{equation} \label{pmfadens} \mu (E_2(2^{N+3}, {\mathfrak p}_{{\vartheta }}))\le 2^{Na+3a}\operatorname{\operatorname {dens}}_1(\mathfrak {A}) {\mu (L’)}\, . \end{equation}
6.3.37

Now let \({\mathfrak p}\) be any tile in the summation set in 6.3.32, that is, \({\mathfrak p}\in \mathfrak {A}'\) and \({\mathcal{I}}({\mathfrak p})\neq L'\). Then \({\mathcal{I}}({\mathfrak p})\cap L\neq \emptyset \). It follows by the dyadic property 2.0.8 and the definition of \(L\) that \(L\subset {\mathcal{I}}({\mathfrak p})\) and \(L\neq {\mathcal{I}}({\mathfrak p})\). By the dyadic property 2.0.8, we have \(s(L){\lt}{\mathrm{s}}({\mathfrak p})\) and thus \(s(L')\le {\mathrm{s}}({\mathfrak p})\). By the dyadic property 2.0.8 again, we have \(L'\subset {\mathcal{I}}({\mathfrak p})\). As \(L'\neq {\mathcal{I}}({\mathfrak p})\), we conclude \(s(L){\lt}{\mathrm{s}}({\mathfrak p})\). By Lemma 6.3.3, we can thus estimate 6.3.32 by

\begin{equation} \label{eqanti0.5} \sum _{{\mathfrak p}\in \mathfrak {A}':{\mathcal{I}}({\mathfrak p})\neq L'}\mu (E({\mathfrak p})\cap G\cap L') \le \mu (E_2(2^{N+3},{\mathfrak p}_{{\vartheta }}))\, . \end{equation}
6.3.38

Using the decomposition into 6.3.31 and 6.3.32 and the estimates 6.3.33, 6.3.21, 6.3.37 we obtain the estimate

\begin{equation} \label{eqanti3.14} \sum _{{\mathfrak p}\in \mathfrak {A}'}\mu (E({\mathfrak p})\cap G \cap L) \le (2^{a(N+5)}+2^{Na+3a})\operatorname{\operatorname {dens}}_1(\mathfrak {A})\mu (L')\, . \end{equation}
6.3.39

Using \(s(L')=s(L)+1\) and \(D=2^{100a^2}\) and the squeezing property 2.0.10 and the doubling property 1.0.5 \(100a^2+4\) times , we obtain

\begin{equation} \mu (L')\le 2^{100a^3+4a}\mu (L)\, . \end{equation}
6.3.40

Inserting in 6.3.39 and using \(a\ge 4\) gives 6.3.30. This completes the proof of the lemma.

We turn to the proof of Lemma 6.1.6.

Proof of Lemma 6.1.6

Using that \(\mathfrak {A}\) is the union of the \(\mathfrak {A}_{{\vartheta },N}\) with \(N\ge 0\), we estimate the left-hand side 6.1.45 with the triangle inequality by

\begin{equation} \label{eqanti23} \le \sum _{N\ge 0} \left\| \sum _{{\mathfrak p}\in \mathfrak {A}_{{\vartheta },N}} 2^{-N/(2a^2+a^3)}\mathbf{1}_{E({\mathfrak p})} \mathbf{1}_G\right\| _{p} \end{equation}
6.3.41

We consider each individual term in this sum and estimate it’s \(p\)-th power. Using that for each \(x\in X\) by Lemma 6.3.4 there is at most one \({\mathfrak p}\in \mathfrak {A}\) with \(x\in E({\mathfrak p})\), we have

\begin{equation} \left\| \sum _{{\mathfrak p}\in \mathfrak {A}_{{\vartheta },N}} 2^{-N/(2a^2+a^3)}\mathbf{1}_{E({\mathfrak p})} \mathbf{1}_G\right\| _{p}^p \end{equation}
6.3.42

\begin{equation} =\int _G\Big(\sum _{{\mathfrak p}\in \mathfrak {A}_{{\vartheta },N}}2^{-N/(2a^2+a^3)}\mathbf{1}_{E({\mathfrak p})}(x)\Big)^p\, d\mu (x) \end{equation}
6.3.43

\begin{equation} = \int _G\sum _{{\mathfrak p}\in \mathfrak {A}_{{\vartheta },N}}2^{-pN/(2a^2+a^3)}\mathbf{1}_{E({\mathfrak p})}(x)\, d\mu (x) \end{equation}
6.3.44

\begin{equation} = 2^{-pN/(2a^2+a^3)} \sum _{{\mathfrak p}\in \mathfrak {A}_{{\vartheta },N}}\mu (E({\mathfrak p})\cap G) \end{equation}
6.3.45

Using Lemma 6.3.4, we estimate the last display by

\begin{equation} \label{eqanti21} \le 2^{-pN/(2a^2+a^3)+101a^3+Na}\operatorname{\operatorname {dens}}_1(\mathfrak {A})\mu \left(\cup _{{\mathfrak p}\in \mathfrak {A}}{\mathcal{I}}({\mathfrak p})\right) \end{equation}
6.3.46

Using that with \(a\ge 4\) and since \(p = 4a^4\), we have

\begin{equation} pN/(2a^2+a^3)\ge 4a^4N/(3a^3) \ge Na+N\, . \end{equation}
6.3.47

Hence we have for 6.3.46 the upper bound

\begin{equation} \label{eqanti22} \le 2^{101a^3-N}\operatorname{\operatorname {dens}}_1(\mathfrak {A})\mu \left(\cup _{{\mathfrak p}\in \mathfrak {A}}{\mathcal{I}}({\mathfrak p})\right)\, . \end{equation}
6.3.48

Taking th \(p\)-th root and summing over \(N\ge 0\) gives for 6.3.41 the upper bound

\begin{equation} \le \left(\sum _{N\ge 0} 2^{-N/p}\right)2^{101a^3/p}\operatorname{\operatorname {dens}}_1(\mathfrak {A})^{{\frac{1}{p}}}\mu \left(\cup _{{\mathfrak p}\in \mathfrak {A}}{\mathcal{I}}({\mathfrak p})\right)^{{\frac{1}{p}}} \end{equation}
6.3.49

\begin{equation} \le \left(1-2^{-1/p}\right)^{-1} 2^{101a^3/p} \operatorname{\operatorname {dens}}_1(\mathfrak {A})^{\frac1p}\mu \left(\cup _{{\mathfrak p}\in \mathfrak {A}}{\mathcal{I}}({\mathfrak p})\right)^{\frac1p}\, . \end{equation}
6.3.50

Using that \(p = 4a^4\) and \(a \ge 4\), this proves the lemma.