Carleson operators on doubling metric measure spaces

6 Proof of the Antichain Operator Proposition

Let an antichain A and functions f, g as in Proposition 2.0.3 be given. We prove 2.0.30 in Section 6.1 as the geometric mean of two inequalities, each involving one of the two densities. One of these two inequalities will need a careful estimate formulated in Lemma 6.1.5 of the TT correlation between two tile operators. Lemma 6.1.5 will be proven in Section 6.2.

The summation of the contributions of these individual correlations will require a geometric Lemma 6.1.6 counting the relevant tile pairs. Lemma 6.1.6 will be proven in Subsection 6.3.

6.1 The density arguments

We begin with the following crucial disjointedness property of the sets E(p) with pA.

Lemma 6.1.1 tile disjointness
#

Let p,pA. If there exists an xX with xE(p)E(p), then p=p.

Proof

Let B be the collection of balls

B(c(p),8Ds(p))
6.1.1

with pA and recall the definition of MB from Definition 2.0.41.

Lemma 6.1.2 maximal bound antichain
#

Let xX. Then

|pATpf(x)|2107a3MBf(x).
6.1.2

Proof

Set

q~=2q1+q.
6.1.10

Since 1<q2, we have 1<q~<q2.

Lemma 6.1.3 dens2 antichain
#

We have that

|g(x)pATpf(x)dμ(x)|2111a3(q1)1dens2(A)1q~12f2g2.
6.1.11

Proof
Lemma 6.1.4 dens1 antichain

Set p:=4a4. We have

|g(x)pATpf(x)dμ(x)|2150a3dens1(A)12pf2g2.
6.1.22

Proof

The following basic TT estimate will be proved in Section 6.2.

Let p,pP with s(p)s(p). Then

|TpgTpg|
6.1.43

2255a3(1+dp(Q(p),Q(p))1/(2a2+a3)μ(I(p))E(p)|g|E(p)|g|.
6.1.44

Moreover, the term 6.1.43 vanishes unless

I(p)B(c(p),15Ds(p)).
6.1.45

The following lemma will be proved in Section 6.3.

Lemma 6.1.6 antichain tile count
#

Set p:=4a4 and let p be the dual exponent of p, that is 1/p+1/p=1. For every ϑΘ and every subset A of A we have

pA(1+dp(Q(p),ϑ))1/(2a2+a3)1E(p)1Gp
6.1.46

2104adens1(A)1pμ(pAIp)1p.
6.1.47

From these lemmas it is easy to prove Proposition 2.0.3.

Proof of Proposition 2.0.3

6.2 Proof of the Tile Correlation Lemma

The next lemma prepares an application of Proposition 2.0.5.

Lemma 6.2.1 correlation kernel bound

Let Ss1s2S and let x1,x2X. Define

φ(y):=Ks1(x1,y)Ks2(x2,y).
6.2.1

If φ(y)0, then

yB(x1,Ds1).
6.2.2

Moreover, we have with τ=1/a

φCτ(B(x1,Ds1))2254a3μ(B(x1,Ds1))μ(B(x2,Ds2)).
6.2.3

Proof

The following auxiliary statement about the support of Tpg will be used repeatedly.

Lemma 6.2.2 tile range support
#

For each pP, and each yX, we have that

Tpg(y)0
6.2.10

implies

yB(c(p),5Ds(p)).
6.2.11

Proof

The next lemma is a geometric estimate for two tiles.

Lemma 6.2.3
#

Let p1,p2P with B(c(p1),5Ds(p1))B(c(p2),5Ds(p2)) and s(p1)s(p2). For each x1E(p1) and x2E(p2) we have

1+dp1(Q(p1),Q(p2))28a(1+dB(x1,Ds(p1))(Q(x1),Q(x2))).
6.2.15

Proof

We now prove Lemma 6.1.5.

Proof of Lemma 6.1.5

6.3 Proof of the Antichain Tile Count Lemma

Lemma 6.3.1 tile reach
#

Let ϑΘ and N0 be an integer. Let p,pP with

dp(Q(p),ϑ))2N
6.3.1

dp(Q(p),ϑ))2N.
6.3.2

Assume I(p)I(p) and s(p)<s(p). Then

2N+2p2N+2p.
6.3.3

Proof

For ϑΘ and N0 define

Aϑ,N:={pA:2N1+dp(Q(p),ϑ)2N+1}.
6.3.15

Lemma 6.3.2 stack density
#

Let ϑΘ, N0 and LD. Then

pAϑ,N:I(p)=Lμ(E(p)G)2a(N+5)dens1(A)μ(L).
6.3.16

Proof
Lemma 6.3.3 local antichain density

Let ϑΘ and N be an integer. Let pϑ be a tile with ϑΩ(pϑ). Then we have

pAϑ,N:s(pϑ)<s(p)μ(E(p)GI(pϑ))μ(E2(2N+3,pϑ)).
6.3.21

Proof
Lemma 6.3.4 global antichain density

Let ϑΘ and let N0 be an integer. Then we have

pAϑ,Nμ(E(p)G)2101a3+Nadens1(A)μ(pAIp).
6.3.26

Proof

We turn to the proof of Lemma 6.1.6.

Proof of Lemma 6.1.6