Documentation

Carleson.TwoSidedCarleson.NontangentialOperator

Section 10.1 and Lemma 10.0.2 #

def simpleNontangentialOperator {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] (K : XX) (r : ) (g : X) (x : X) :

The operator T_*^r g(x), defined in (10.1.31), as part of Lemma 10.1.6.

Equations
theorem Real.two_mul_lt_two_pow (x : ) (hx : 2 x) :
2 * x 2 ^ x
theorem geom_estimate_constant_le_two :
(4 * (1 - 2 ^ (-1 / 4)))⁻¹ 2
theorem real_geometric_series_estimate {x : } (hx : 4 x) :
∑' (n : ), 2 ^ (-n / x) 2 ^ x
theorem geometric_series_estimate {x : } (hx : 4 x) :
∑' (n : ), 2 ^ (-n / x) 2 ^ x

Lemma 10.1.1

@[irreducible]
def C10_1_2 (a : ) :

The constant used in estimate_x_shift.

Equations
theorem C10_1_2_def (a : ) :
C10_1_2 a = 2 ^ (a ^ 3 + 2 * a + 1)
theorem estimate_x_shift {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {r : } {K : XX} {x x' : X} [IsTwoSidedKernel a K] [CompatibleFunctions X (defaultA a)] [IsCancellative X (defaultτ a)] (ha : 4 a) {g : X} (hg : BoundedFiniteSupport g MeasureTheory.volume) (hr : 0 < r) (hx : dist x x' r) :

Lemma 10.1.2

theorem C10_1_3_def (a : ) :
C10_1_3 a = 2 ^ (a ^ 3 + 4 * a + 1)
@[irreducible]
def C10_1_3 (a : ) :

The constant used in cotlar_control.

Equations
theorem cotlar_control {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {r R : } {K : XX} {x x' : X} [IsTwoSidedKernel a K] [CompatibleFunctions X (defaultA a)] [IsCancellative X (defaultτ a)] (ha : 4 a) {g : X} (hg : BoundedFiniteSupport g MeasureTheory.volume) (hr : r Set.Ioc 0 R) (hx : dist x x' R / 4) :

Lemma 10.1.3

theorem C10_1_4_def (a : ) :
C10_1_4 a = 2 ^ (a ^ 3 + 20 * a + 2)
@[irreducible]
def C10_1_4 (a : ) :

The constant used in cotlar_set_F₂.

Equations

Part 1 of Lemma 10.1.4 about F₁.

Part 2 of Lemma 10.1.4 about F₂.

theorem C10_1_5_def (a : ) :
C10_1_5 a = 2 ^ (a ^ 3 + 20 * a + 2)
@[irreducible]
def C10_1_5 (a : ) :

The constant used in cotlar_estimate.

Equations
theorem C10_1_6_def (a : ) :
C10_1_6 a = 2 ^ (a ^ 3 + 24 * a + 6)
@[irreducible]
def C10_1_6 (a : ) :

The constant used in simple_nontangential_operator.

Equations

Lemma 10.1.6. The formal statement includes the measurability of the operator. See also simple_nontangential_operator_le

This is the first step of the proof of Lemma 10.0.2, and should follow from 10.1.6 + monotone convergence theorem. (measurability should be proven without any restriction on r.)

theorem small_annulus_right {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {K : XX} {x' : X} [IsTwoSidedKernel a K] [CompatibleFunctions X (defaultA a)] [IsCancellative X (defaultτ a)] (ha : 4 a) (hT : r > 0, MeasureTheory.HasBoundedStrongType (czOperator K r) 2 2 MeasureTheory.volume MeasureTheory.volume (C_Ts a)) {f : X} (hf : BoundedFiniteSupport f MeasureTheory.volume) {R₁ : } :
Continuous fun (R₂ : ) => (y : X) in {y : X | dist x' y Set.Ioo R₁ R₂}, K x' y * f y

Part of Lemma 10.1.7, reformulated.

theorem small_annulus_left {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {K : XX} {x' : X} [IsTwoSidedKernel a K] [CompatibleFunctions X (defaultA a)] [IsCancellative X (defaultτ a)] (ha : 4 a) (hT : r > 0, MeasureTheory.HasBoundedStrongType (czOperator K r) 2 2 MeasureTheory.volume MeasureTheory.volume (C_Ts a)) {f : X} (hf : BoundedFiniteSupport f MeasureTheory.volume) {R₂ : } :
Continuous fun (R₁ : ) => (y : X) in {y : X | dist x' y Set.Ioo R₁ R₂}, K x' y * f y

Part of Lemma 10.1.7, reformulated

theorem nontangential_operator_boundary {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {K : XX} {x : X} [IsTwoSidedKernel a K] [CompatibleFunctions X (defaultA a)] [IsCancellative X (defaultτ a)] (ha : 4 a) {f : X} (hf : BoundedFiniteSupport f MeasureTheory.volume) :
nontangentialOperator K f x = ⨆ (R₁ : ), ⨆ (R₂ : ), ⨆ (_ : R₁ < R₂), ⨆ (x' : X), ⨆ (_ : dist x x' R₁), (y : X) in Metric.ball x' R₂ \ Metric.ball x' R₁, K x' y * f y‖ₑ

Lemma 10.1.8.

theorem C10_0_2_def (a : ) :
C10_0_2 a = 2 ^ (3 * a ^ 3)
@[irreducible]
def C10_0_2 (a : ) :

The constant used in nontangential_from_simple.

Equations

Lemma 10.0.2. The formal statement includes the measurability of the operator.