Section 10.1 and Lemma 10.0.2 #
def
simpleNontangentialOperator
{X : Type u_1}
{a : ℕ}
[MetricSpace X]
[MeasureTheory.DoublingMeasure X ↑(defaultA a)]
(K : X → X → ℂ)
(r : ℝ)
(g : X → ℂ)
(x : X)
:
The operator T_*^r g(x)
, defined in (10.1.31), as part of Lemma 10.1.6.
Equations
- simpleNontangentialOperator K r g x = ⨆ (R : ℝ), ⨆ (_ : R > r), ⨆ x' ∈ Metric.ball x R, ‖CZOperator K R g x'‖ₑ
Instances For
theorem
estimate_x_shift
{X : Type u_1}
{a : ℕ}
[MetricSpace X]
[MeasureTheory.DoublingMeasure X ↑(defaultA a)]
{r : ℝ}
{K : X → X → ℂ}
{x x' : X}
[IsTwoSidedKernel a K]
[CompatibleFunctions ℝ X (defaultA a)]
[IsCancellative X (defaultτ a)]
(ha : 4 ≤ a)
{g : X → ℂ}
(hmg : Measurable g)
(hg : MeasureTheory.eLpNorm g ⊤ MeasureTheory.volume < ⊤)
(h2g : MeasureTheory.volume (Function.support g) < ⊤)
(hr : 0 < r)
(hx : dist x x' ≤ r)
:
↑(nndist (CZOperator K r g x) (CZOperator K r g x')) ≤ ↑(C10_1_2 a) * globalMaximalFunction MeasureTheory.volume 1 g x
Lemma 10.1.2
theorem
cotlar_control
{X : Type u_1}
{a : ℕ}
[MetricSpace X]
[MeasureTheory.DoublingMeasure X ↑(defaultA a)]
{r R : ℝ}
{K : X → X → ℂ}
{x x' : X}
[IsTwoSidedKernel a K]
[CompatibleFunctions ℝ X (defaultA a)]
[IsCancellative X (defaultτ a)]
(ha : 4 ≤ a)
{g : X → ℂ}
(hmg : Measurable g)
(hg : MeasureTheory.eLpNorm g ⊤ MeasureTheory.volume < ⊤)
(h2g : MeasureTheory.volume (Function.support g) < ⊤)
(hr : r ∈ Set.Ioc 0 R)
(hx : dist x x' ≤ R / 4)
:
‖CZOperator K R g x‖ₑ ≤ ‖CZOperator K r ((Metric.ball x (R / 2))ᶜ.indicator g) x'‖ₑ + ↑(C10_1_3 a) * globalMaximalFunction MeasureTheory.volume 1 g x
Lemma 10.1.3
theorem
cotlar_set_F₁
{X : Type u_1}
{a : ℕ}
[MetricSpace X]
[MeasureTheory.DoublingMeasure X ↑(defaultA a)]
{r R : ℝ}
{K : X → X → ℂ}
{x : X}
[IsTwoSidedKernel a K]
[CompatibleFunctions ℝ X (defaultA a)]
[IsCancellative X (defaultτ a)]
(ha : 4 ≤ a)
(hT :
∀ r > 0, MeasureTheory.HasBoundedStrongType (CZOperator K r) 2 2 MeasureTheory.volume MeasureTheory.volume (C_Ts ↑a))
{g : X → ℂ}
(hmg : Measurable g)
(hg : MeasureTheory.eLpNorm g ⊤ MeasureTheory.volume < ⊤)
(h2g : MeasureTheory.volume (Function.support g) < ⊤)
:
MeasureTheory.volume
{x' : X |
x' ∈ Metric.ball x (R / 4) ∧ 4 * globalMaximalFunction MeasureTheory.volume 1 (CZOperator K r g) x < ‖CZOperator K r g x'‖ₑ} ≤ MeasureTheory.volume (Metric.ball x (R / 4)) / 4
Part 1 of Lemma 10.1.4 about F₁
.
theorem
cotlar_set_F₂
{X : Type u_1}
{a : ℕ}
[MetricSpace X]
[MeasureTheory.DoublingMeasure X ↑(defaultA a)]
{r R : ℝ}
{K : X → X → ℂ}
{x : X}
[IsTwoSidedKernel a K]
[CompatibleFunctions ℝ X (defaultA a)]
[IsCancellative X (defaultτ a)]
(ha : 4 ≤ a)
(hT :
∀ r > 0, MeasureTheory.HasBoundedStrongType (CZOperator K r) 2 2 MeasureTheory.volume MeasureTheory.volume (C_Ts ↑a))
{g : X → ℂ}
(hmg : Measurable g)
(hg : MeasureTheory.eLpNorm g ⊤ MeasureTheory.volume < ⊤)
(h2g : MeasureTheory.volume (Function.support g) < ⊤)
:
MeasureTheory.volume
{x' : X |
x' ∈ Metric.ball x (R / 4) ∧ ↑(C10_1_4 a) * globalMaximalFunction MeasureTheory.volume 1 g x < ‖CZOperator K r ((Metric.ball x (R / 2)).indicator g) x'‖ₑ} ≤ MeasureTheory.volume (Metric.ball x (R / 4)) / 4
Part 2 of Lemma 10.1.4 about F₂
.
theorem
cotlar_estimate
{X : Type u_1}
{a : ℕ}
[MetricSpace X]
[MeasureTheory.DoublingMeasure X ↑(defaultA a)]
{r R : ℝ}
{K : X → X → ℂ}
{x : X}
[IsTwoSidedKernel a K]
[CompatibleFunctions ℝ X (defaultA a)]
[IsCancellative X (defaultτ a)]
(ha : 4 ≤ a)
(hT :
∀ r > 0, MeasureTheory.HasBoundedStrongType (CZOperator K r) 2 2 MeasureTheory.volume MeasureTheory.volume (C_Ts ↑a))
{g : X → ℂ}
(hmg : Measurable g)
(hg : MeasureTheory.eLpNorm g ⊤ MeasureTheory.volume < ⊤)
(h2g : MeasureTheory.volume (Function.support g) < ⊤)
(hr : r ∈ Set.Ioc 0 R)
:
‖CZOperator K R g x‖ₑ ≤ 4 * globalMaximalFunction MeasureTheory.volume 1 (CZOperator K r g) x + ↑(C10_1_5 a) * globalMaximalFunction MeasureTheory.volume 1 g x
Lemma 10.1.5
theorem
simple_nontangential_operator
{X : Type u_1}
{a : ℕ}
[MetricSpace X]
[MeasureTheory.DoublingMeasure X ↑(defaultA a)]
{r : ℝ}
{K : X → X → ℂ}
[IsTwoSidedKernel a K]
[CompatibleFunctions ℝ X (defaultA a)]
[IsCancellative X (defaultτ a)]
(ha : 4 ≤ a)
(hT :
∀ r > 0, MeasureTheory.HasBoundedStrongType (CZOperator K r) 2 2 MeasureTheory.volume MeasureTheory.volume (C_Ts ↑a))
{g : X → ℂ}
(hmg : Measurable g)
(hg : MeasureTheory.eLpNorm g ⊤ MeasureTheory.volume < ⊤)
(h2g : MeasureTheory.volume (Function.support g) < ⊤)
(hr : 0 < r)
:
Lemma 10.1.6. The formal statement includes the measurability of the operator.
See also simple_nontangential_operator_le
theorem
simple_nontangential_operator_le
{X : Type u_1}
{a : ℕ}
[MetricSpace X]
[MeasureTheory.DoublingMeasure X ↑(defaultA a)]
{r : ℝ}
{K : X → X → ℂ}
[IsTwoSidedKernel a K]
[CompatibleFunctions ℝ X (defaultA a)]
[IsCancellative X (defaultτ a)]
(ha : 4 ≤ a)
(hT :
∀ r > 0, MeasureTheory.HasBoundedStrongType (CZOperator K r) 2 2 MeasureTheory.volume MeasureTheory.volume (C_Ts ↑a))
{g : X → ℂ}
(hmg : Measurable g)
(hg : MeasureTheory.eLpNorm g ⊤ MeasureTheory.volume < ⊤)
(h2g : MeasureTheory.volume (Function.support g) < ⊤)
(hr : 0 ≤ r)
:
This is the first step of the proof of Lemma 10.0.2, and should follow from 10.1.6 +
monotone convergence theorem. (measurability should be proven without any restriction on r
.)
theorem
small_annulus_right
{X : Type u_1}
{a : ℕ}
[MetricSpace X]
[MeasureTheory.DoublingMeasure X ↑(defaultA a)]
{K : X → X → ℂ}
{x' : X}
[IsTwoSidedKernel a K]
[CompatibleFunctions ℝ X (defaultA a)]
[IsCancellative X (defaultτ a)]
(ha : 4 ≤ a)
(hT :
∀ r > 0, MeasureTheory.HasBoundedStrongType (CZOperator K r) 2 2 MeasureTheory.volume MeasureTheory.volume (C_Ts ↑a))
{f : X → ℂ}
(hmf : Measurable f)
(hf : MeasureTheory.eLpNorm f ⊤ MeasureTheory.volume < ⊤)
(h2f : MeasureTheory.volume (Function.support f) < ⊤)
{R₁ : ℝ}
:
Part of Lemma 10.1.7, reformulated
theorem
small_annulus_left
{X : Type u_1}
{a : ℕ}
[MetricSpace X]
[MeasureTheory.DoublingMeasure X ↑(defaultA a)]
{K : X → X → ℂ}
{x' : X}
[IsTwoSidedKernel a K]
[CompatibleFunctions ℝ X (defaultA a)]
[IsCancellative X (defaultτ a)]
(ha : 4 ≤ a)
(hT :
∀ r > 0, MeasureTheory.HasBoundedStrongType (CZOperator K r) 2 2 MeasureTheory.volume MeasureTheory.volume (C_Ts ↑a))
{f : X → ℂ}
(hmf : Measurable f)
(hf : MeasureTheory.eLpNorm f ⊤ MeasureTheory.volume < ⊤)
(h2f : MeasureTheory.volume (Function.support f) < ⊤)
{R₂ : ℝ}
:
Part of Lemma 10.1.7, reformulated
theorem
nontangential_operator_boundary
{X : Type u_1}
{a : ℕ}
[MetricSpace X]
[MeasureTheory.DoublingMeasure X ↑(defaultA a)]
{K : X → X → ℂ}
{x : X}
[IsTwoSidedKernel a K]
[CompatibleFunctions ℝ X (defaultA a)]
[IsCancellative X (defaultτ a)]
(ha : 4 ≤ a)
{f : X → ℂ}
(hmf : Measurable f)
(hf : MeasureTheory.eLpNorm f ⊤ MeasureTheory.volume < ⊤)
(h2f : MeasureTheory.volume (Function.support f) < ⊤)
:
nontangentialOperator K f x = ⨆ (R₁ : ℝ),
⨆ (R₂ : ℝ),
⨆ (_ : R₁ < R₂),
⨆ (x' : X), ⨆ (_ : dist x x' ≤ R₁), ‖∫ (y : X) in Metric.ball x' R₂ \ Metric.ball x' R₁, K x' y * f y‖ₑ
Lemma 10.1.8.
theorem
nontangential_from_simple
{X : Type u_1}
{a : ℕ}
[MetricSpace X]
[MeasureTheory.DoublingMeasure X ↑(defaultA a)]
{K : X → X → ℂ}
[IsTwoSidedKernel a K]
[CompatibleFunctions ℝ X (defaultA a)]
[IsCancellative X (defaultτ a)]
(ha : 4 ≤ a)
(hT :
∀ r > 0, MeasureTheory.HasBoundedStrongType (CZOperator K r) 2 2 MeasureTheory.volume MeasureTheory.volume (C_Ts ↑a))
{g : X → ℂ}
(hmg : Measurable g)
(hg : MeasureTheory.eLpNorm g ⊤ MeasureTheory.volume < ⊤)
(h2g : MeasureTheory.volume (Function.support g) < ⊤)
:
Lemma 10.0.2. The formal statement includes the measurability of the operator.