Section 10.1 and Lemma 10.0.2 #
def
simpleNontangentialOperator
{X : Type u_1}
{a : ℕ}
[MetricSpace X]
[MeasureTheory.DoublingMeasure X ↑(defaultA a)]
(K : X → X → ℂ)
(r : ℝ)
(g : X → ℂ)
(x : X)
:
The operator T_*^r g(x), defined in (10.1.31), above Lemma 10.1.6.
Equations
- simpleNontangentialOperator K r g x = ⨆ (R : ℝ), ⨆ (_ : R > r), ⨆ x' ∈ Metric.ball x R, ‖czOperator K R g x'‖ₑ
Instances For
theorem
estimate_10_1_2
{X : Type u_1}
{a : ℕ}
[MetricSpace X]
[MeasureTheory.DoublingMeasure X ↑(defaultA a)]
{r : ℝ}
{K : X → X → ℂ}
{x : X}
[IsTwoSidedKernel a K]
{g : X → ℂ}
(hg : BoundedFiniteSupport g MeasureTheory.volume)
(hr : 0 < r)
:
∫⁻ (y : X) in (Metric.ball x r)ᶜ ∩ Metric.ball x (2 * r), ‖K x y * g y‖ₑ ≤ 2 ^ (a ^ 3 + a) * globalMaximalFunction MeasureTheory.volume 1 g x
theorem
estimate_10_1_3
{X : Type u_1}
{a : ℕ}
[MetricSpace X]
[MeasureTheory.DoublingMeasure X ↑(defaultA a)]
{r : ℝ}
{K : X → X → ℂ}
{x x' : X}
[IsTwoSidedKernel a K]
(ha : 4 ≤ a)
{g : X → ℂ}
(hg : BoundedFiniteSupport g MeasureTheory.volume)
(hr : 0 < r)
(hx : dist x x' ≤ r)
:
theorem
estimate_10_1_4
{X : Type u_1}
{a : ℕ}
[MetricSpace X]
[MeasureTheory.DoublingMeasure X ↑(defaultA a)]
{r : ℝ}
{K : X → X → ℂ}
{x x' : X}
[IsTwoSidedKernel a K]
{g : X → ℂ}
(hg : BoundedFiniteSupport g MeasureTheory.volume)
(hr : 0 < r)
(hx : dist x x' ≤ r)
:
∫⁻ (y : X) in (Metric.ball x' r)ᶜ ∩ Metric.ball x (2 * r), ‖K x' y * g y‖ₑ ≤ 2 ^ (a ^ 3 + 2 * a) * globalMaximalFunction MeasureTheory.volume 1 g x
theorem
estimate_x_shift
{X : Type u_1}
{a : ℕ}
[MetricSpace X]
[MeasureTheory.DoublingMeasure X ↑(defaultA a)]
{r : ℝ}
{K : X → X → ℂ}
{x x' : X}
[IsTwoSidedKernel a K]
(ha : 4 ≤ a)
{g : X → ℂ}
(hg : BoundedFiniteSupport g MeasureTheory.volume)
(hr : 0 < r)
(hx : dist x x' ≤ r)
:
edist (czOperator K r g x) (czOperator K r g x') ≤ ↑(C10_1_2 a) * globalMaximalFunction MeasureTheory.volume 1 g x
Lemma 10.1.2
theorem
radius_change
{X : Type u_1}
{a : ℕ}
[MetricSpace X]
[MeasureTheory.DoublingMeasure X ↑(defaultA a)]
{r R : ℝ}
{K : X → X → ℂ}
{x x' : X}
[IsTwoSidedKernel a K]
{g : X → ℂ}
(hg : BoundedFiniteSupport g MeasureTheory.volume)
(hr : r ∈ Set.Ioc 0 R)
(hx : dist x x' ≤ R / 4)
:
‖czOperator K r ((Metric.ball x (R / 2))ᶜ.indicator g) x' - czOperator K R ((Metric.ball x (R / 2))ᶜ.indicator g) x'‖ₑ ≤ 2 ^ (a ^ 3 + 4 * a) * globalMaximalFunction MeasureTheory.volume 1 g x
theorem
cut_out_ball
{X : Type u_1}
{a : ℕ}
[MetricSpace X]
[MeasureTheory.DoublingMeasure X ↑(defaultA a)]
{r R : ℝ}
{K : X → X → ℂ}
{x x' : X}
{g : X → ℂ}
(hr : r ∈ Set.Ioc 0 R)
(hx : dist x x' ≤ R / 4)
:
theorem
cotlar_control
{X : Type u_1}
{a : ℕ}
[MetricSpace X]
[MeasureTheory.DoublingMeasure X ↑(defaultA a)]
{r R : ℝ}
{K : X → X → ℂ}
{x x' : X}
[IsTwoSidedKernel a K]
(ha : 4 ≤ a)
{g : X → ℂ}
(hg : BoundedFiniteSupport g MeasureTheory.volume)
(hr : r ∈ Set.Ioc 0 R)
(hx : dist x x' ≤ R / 4)
:
‖czOperator K R g x‖ₑ ≤ ‖czOperator K r ((Metric.ball x (R / 2))ᶜ.indicator g) x'‖ₑ + ↑(C10_1_3 a) * globalMaximalFunction MeasureTheory.volume 1 g x
Lemma 10.1.3
theorem
globalMaximalFunction_zero_enorm_ae_zero
{X : Type u_1}
{a : ℕ}
[MetricSpace X]
[MeasureTheory.DoublingMeasure X ↑(defaultA a)]
{R : ℝ}
{x : X}
(hR : 0 < R)
{f : X → ℂ}
(hf : MeasureTheory.AEStronglyMeasurable f MeasureTheory.volume)
(hMzero : globalMaximalFunction MeasureTheory.volume 1 f x = 0)
:
∀ᵐ (x' : X) ∂MeasureTheory.volume.restrict (Metric.ball x R), ‖f x'‖ₑ = 0
theorem
cotlar_set_F₁
{X : Type u_1}
{a : ℕ}
[MetricSpace X]
[MeasureTheory.DoublingMeasure X ↑(defaultA a)]
{r R : ℝ}
{K : X → X → ℂ}
{x : X}
[IsTwoSidedKernel a K]
(hr : 0 < r)
(hR : r ≤ R)
{g : X → ℂ}
(hg : BoundedFiniteSupport g MeasureTheory.volume)
:
(MeasureTheory.volume.restrict (Metric.ball x (R / 4)))
{x' : X | 4 * globalMaximalFunction MeasureTheory.volume 1 (czOperator K r g) x < ‖czOperator K r g x'‖ₑ} ≤ MeasureTheory.volume (Metric.ball x (R / 4)) / 4
Part 1 of Lemma 10.1.4 about F₁.
theorem
cotlar_set_F₂
{X : Type u_1}
{a : ℕ}
[MetricSpace X]
[MeasureTheory.DoublingMeasure X ↑(defaultA a)]
{r R : ℝ}
{K : X → X → ℂ}
{x : X}
[IsTwoSidedKernel a K]
(ha : 4 ≤ a)
(hr : 0 < r)
(hR : r ≤ R)
(hT :
∀ r > 0, MeasureTheory.HasBoundedStrongType (czOperator K r) 2 2 MeasureTheory.volume MeasureTheory.volume ↑(C_Ts a))
{g : X → ℂ}
(hg : BoundedFiniteSupport g MeasureTheory.volume)
:
(MeasureTheory.volume.restrict (Metric.ball x (R / 4)))
{x' : X | ↑(C10_1_4 a) * globalMaximalFunction MeasureTheory.volume 1 g x < ‖czOperator K r ((Metric.ball x (R / 2)).indicator g) x'‖ₑ} ≤ MeasureTheory.volume (Metric.ball x (R / 4)) / 4
Part 2 of Lemma 10.1.4 about F₂.
theorem
cotlar_estimate
{X : Type u_1}
{a : ℕ}
[MetricSpace X]
[MeasureTheory.DoublingMeasure X ↑(defaultA a)]
{r R : ℝ}
{K : X → X → ℂ}
{x : X}
[IsTwoSidedKernel a K]
(ha : 4 ≤ a)
(hT :
∀ r > 0, MeasureTheory.HasBoundedStrongType (czOperator K r) 2 2 MeasureTheory.volume MeasureTheory.volume ↑(C_Ts a))
{g : X → ℂ}
(hg : BoundedFiniteSupport g MeasureTheory.volume)
(hr : r ∈ Set.Ioc 0 R)
:
‖czOperator K R g x‖ₑ ≤ 4 * globalMaximalFunction MeasureTheory.volume 1 (czOperator K r g) x + ↑(C10_1_5 a) * globalMaximalFunction MeasureTheory.volume 1 g x
Lemma 10.1.5
theorem
lowerSemicontinuous_simpleNontangentialOperator
{X : Type u_1}
{a : ℕ}
[MetricSpace X]
[MeasureTheory.DoublingMeasure X ↑(defaultA a)]
{r : ℝ}
{K : X → X → ℂ}
{g : X → ℂ}
:
Part of Lemma 10.1.6.
theorem
aestronglyMeasurable_simpleNontangentialOperator
{X : Type u_1}
{a : ℕ}
[MetricSpace X]
[MeasureTheory.DoublingMeasure X ↑(defaultA a)]
{r : ℝ}
{K : X → X → ℂ}
{g : X → ℂ}
:
theorem
simple_nontangential_operator
{X : Type u_1}
{a : ℕ}
[MetricSpace X]
[MeasureTheory.DoublingMeasure X ↑(defaultA a)]
{r : ℝ}
{K : X → X → ℂ}
[IsTwoSidedKernel a K]
(ha : 4 ≤ a)
(hT :
∀ r > 0, MeasureTheory.HasBoundedStrongType (czOperator K r) 2 2 MeasureTheory.volume MeasureTheory.volume ↑(C_Ts a))
(hr : 0 < r)
:
Lemma 10.1.6. The formal statement includes the measurability of the operator.
See also simple_nontangential_operator_le
theorem
simple_nontangential_operator_le
{X : Type u_1}
{a : ℕ}
[MetricSpace X]
[MeasureTheory.DoublingMeasure X ↑(defaultA a)]
{r : ℝ}
{K : X → X → ℂ}
[IsTwoSidedKernel a K]
(ha : 4 ≤ a)
(hT :
∀ r > 0, MeasureTheory.HasBoundedStrongType (czOperator K r) 2 2 MeasureTheory.volume MeasureTheory.volume ↑(C_Ts a))
(hr : 0 ≤ r)
:
This is the first step of the proof of Lemma 10.0.2, and should follow from 10.1.6 +
monotone convergence theorem. (measurability should be proven without any restriction on r.)
theorem
small_annulus_right
{X : Type u_1}
{a : ℕ}
[MetricSpace X]
[MeasureTheory.DoublingMeasure X ↑(defaultA a)]
{K : X → X → ℂ}
{x : X}
[IsTwoSidedKernel a K]
{g : X → ℂ}
(hg : BoundedFiniteSupport g MeasureTheory.volume)
{R₁ R₂ : ℝ}
(hR₁ : 0 < R₁)
:
ContinuousWithinAt (fun (R₂ : ℝ) => ∫ (y : X) in Set.Annulus.oo x R₁ R₂, K x y * g y) (Set.Ioo R₁ R₂) R₁
Part of Lemma 10.1.7, reformulated.
theorem
small_annulus_left
{X : Type u_1}
{a : ℕ}
[MetricSpace X]
[MeasureTheory.DoublingMeasure X ↑(defaultA a)]
{K : X → X → ℂ}
{x : X}
[IsTwoSidedKernel a K]
{g : X → ℂ}
(hg : BoundedFiniteSupport g MeasureTheory.volume)
{R₁ R₂ : ℝ}
(hR₁ : 0 ≤ R₁)
:
ContinuousWithinAt (fun (R : ℝ) => ∫ (y : X) in Set.Annulus.oo x R R₂, K x y * g y) (Set.Ioo R₁ R₂) R₂
Part of Lemma 10.1.7, reformulated
theorem
nontangential_operator_boundary
{X : Type u_1}
{a : ℕ}
[MetricSpace X]
[MeasureTheory.DoublingMeasure X ↑(defaultA a)]
{K : X → X → ℂ}
{x : X}
[IsTwoSidedKernel a K]
{f : X → ℂ}
(hf : BoundedFiniteSupport f MeasureTheory.volume)
:
nontangentialOperator K f x = ⨆ (R₂ : ℝ),
⨆ R₁ ∈ Set.Ioo 0 R₂, ⨆ x' ∈ Metric.ball x R₁, ‖∫ (y : X) in Metric.ball x' R₂ \ Metric.ball x' R₁, K x' y * f y‖ₑ
Lemma 10.1.8.
theorem
lowerSemicontinuous_nontangentialOperator
{X : Type u_1}
{a : ℕ}
[MetricSpace X]
[MeasureTheory.DoublingMeasure X ↑(defaultA a)]
{K : X → X → ℂ}
{g : X → ℂ}
:
Part of Lemma 10.1.6.
theorem
aestronglyMeasurable_nontangentialOperator
{X : Type u_1}
{a : ℕ}
[MetricSpace X]
[MeasureTheory.DoublingMeasure X ↑(defaultA a)]
{K : X → X → ℂ}
{g : X → ℂ}
:
theorem
nontangential_from_simple
{X : Type u_1}
{a : ℕ}
[MetricSpace X]
[MeasureTheory.DoublingMeasure X ↑(defaultA a)]
{K : X → X → ℂ}
[IsTwoSidedKernel a K]
(ha : 4 ≤ a)
(hT :
∀ r > 0, MeasureTheory.HasBoundedStrongType (czOperator K r) 2 2 MeasureTheory.volume MeasureTheory.volume ↑(C_Ts a))
:
Lemma 10.0.2. The formal statement includes the measurability of the operator.