Documentation

Carleson.TwoSidedCarleson.NontangentialOperator

Section 10.1 and Lemma 10.0.2 #

def simpleNontangentialOperator {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] (K : XX) (r : ) (g : X) (x : X) :

The operator T_*^r g(x), defined in (10.1.31), above Lemma 10.1.6.

Equations
Instances For
    @[irreducible]
    def C10_1_2 (a : ) :

    The constant used in estimate_x_shift.

    Equations
    Instances For
      theorem C10_1_2_def (a : ) :
      C10_1_2 a = 2 ^ (a ^ 3 + 2 * a + 2)
      theorem estimate_10_1_2 {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {r : } {K : XX} {x : X} [IsTwoSidedKernel a K] {g : X} (hg : BoundedFiniteSupport g MeasureTheory.volume) (hr : 0 < r) :
      theorem estimate_10_1_3 {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {r : } {K : XX} {x x' : X} [IsTwoSidedKernel a K] (ha : 4 a) {g : X} (hg : BoundedFiniteSupport g MeasureTheory.volume) (hr : 0 < r) (hx : dist x x' r) :
      (y : X) in (Metric.ball x (2 * r)), K x y * g y - K x' y * g y‖ₑ 2 ^ (a ^ 3 + 2 * a) * globalMaximalFunction MeasureTheory.volume 1 g x
      theorem estimate_10_1_4 {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {r : } {K : XX} {x x' : X} [IsTwoSidedKernel a K] {g : X} (hg : BoundedFiniteSupport g MeasureTheory.volume) (hr : 0 < r) (hx : dist x x' r) :
      ∫⁻ (y : X) in (Metric.ball x' r) Metric.ball x (2 * r), K x' y * g y‖ₑ 2 ^ (a ^ 3 + 2 * a) * globalMaximalFunction MeasureTheory.volume 1 g x
      theorem estimate_x_shift {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {r : } {K : XX} {x x' : X} [IsTwoSidedKernel a K] (ha : 4 a) {g : X} (hg : BoundedFiniteSupport g MeasureTheory.volume) (hr : 0 < r) (hx : dist x x' r) :

      Lemma 10.1.2

      @[irreducible]
      def C10_1_3 (a : ) :

      The constant used in cotlar_control.

      Equations
      Instances For
        theorem C10_1_3_def (a : ) :
        C10_1_3 a = 2 ^ (a ^ 3 + 4 * a + 1)
        theorem radius_change {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {r R : } {K : XX} {x x' : X} [IsTwoSidedKernel a K] {g : X} (hg : BoundedFiniteSupport g MeasureTheory.volume) (hr : r Set.Ioc 0 R) (hx : dist x x' R / 4) :
        theorem cut_out_ball {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {r R : } {K : XX} {x x' : X} {g : X} (hr : r Set.Ioc 0 R) (hx : dist x x' R / 4) :
        czOperator K R g x' = czOperator K R ((Metric.ball x (R / 2)).indicator g) x'
        theorem cotlar_control {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {r R : } {K : XX} {x x' : X} [IsTwoSidedKernel a K] (ha : 4 a) {g : X} (hg : BoundedFiniteSupport g MeasureTheory.volume) (hr : r Set.Ioc 0 R) (hx : dist x x' R / 4) :

        Lemma 10.1.3

        theorem C10_1_4_def (a : ) :
        C10_1_4 a = 2 ^ (a ^ 3 + 22 * a + 2)
        @[irreducible]
        def C10_1_4 (a : ) :

        The constant used in cotlar_set_F₂.

        Equations
        Instances For
          theorem cotlar_set_F₁ {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {r R : } {K : XX} {x : X} [IsTwoSidedKernel a K] (hr : 0 < r) (hR : r R) {g : X} (hg : BoundedFiniteSupport g MeasureTheory.volume) :

          Part 1 of Lemma 10.1.4 about F₁.

          theorem cotlar_set_F₂ {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {r R : } {K : XX} {x : X} [IsTwoSidedKernel a K] (ha : 4 a) (hr : 0 < r) (hR : r R) (hT : r > 0, MeasureTheory.HasBoundedStrongType (czOperator K r) 2 2 MeasureTheory.volume MeasureTheory.volume (C_Ts a)) {g : X} (hg : BoundedFiniteSupport g MeasureTheory.volume) :

          Part 2 of Lemma 10.1.4 about F₂.

          @[irreducible]
          def C10_1_5 (a : ) :

          The constant used in cotlar_estimate.

          Equations
          Instances For
            theorem C10_1_5_def (a : ) :
            C10_1_5 a = 2 ^ (a ^ 3 + 22 * a + 3)

            Part of Lemma 10.1.6.

            @[irreducible]
            def C10_1_6 (a : ) :

            The constant used in simple_nontangential_operator. It is not tight and can be improved by some a + constant.

            Equations
            Instances For
              theorem C10_1_6_def (a : ) :
              C10_1_6 a = 2 ^ (a ^ 3 + 26 * a + 6)

              Lemma 10.1.6. The formal statement includes the measurability of the operator. See also simple_nontangential_operator_le

              This is the first step of the proof of Lemma 10.0.2, and should follow from 10.1.6 + monotone convergence theorem. (measurability should be proven without any restriction on r.)

              theorem small_annulus_right {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {K : XX} {x : X} [IsTwoSidedKernel a K] {g : X} (hg : BoundedFiniteSupport g MeasureTheory.volume) {R₁ R₂ : } (hR₁ : 0 < R₁) :
              ContinuousWithinAt (fun (R₂ : ) => (y : X) in Set.Annulus.oo x R₁ R₂, K x y * g y) (Set.Ioo R₁ R₂) R₁

              Part of Lemma 10.1.7, reformulated.

              theorem small_annulus_left {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {K : XX} {x : X} [IsTwoSidedKernel a K] {g : X} (hg : BoundedFiniteSupport g MeasureTheory.volume) {R₁ R₂ : } (hR₁ : 0 R₁) :
              ContinuousWithinAt (fun (R : ) => (y : X) in Set.Annulus.oo x R R₂, K x y * g y) (Set.Ioo R₁ R₂) R₂

              Part of Lemma 10.1.7, reformulated

              theorem nontangential_operator_boundary {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {K : XX} {x : X} [IsTwoSidedKernel a K] {f : X} (hf : BoundedFiniteSupport f MeasureTheory.volume) :
              nontangentialOperator K f x = ⨆ (R₂ : ), R₁Set.Ioo 0 R₂, x'Metric.ball x R₁, (y : X) in Metric.ball x' R₂ \ Metric.ball x' R₁, K x' y * f y‖ₑ

              Lemma 10.1.8.

              Part of Lemma 10.1.6.

              theorem C10_0_2_def (a : ) :
              C10_0_2 a = 2 ^ (3 * a ^ 3)
              @[irreducible]
              def C10_0_2 (a : ) :

              The constant used in nontangential_from_simple.

              Equations
              Instances For

                Lemma 10.0.2. The formal statement includes the measurability of the operator.