Documentation

Carleson.TwoSidedCarleson.NontangentialOperator

Section 10.1 and Lemma 10.0.2 #

def simpleNontangentialOperator {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] (K : XX) (r : ) (g : X) (x : X) :

The operator T_*^r g(x), defined in (10.1.31), as part of Lemma 10.1.6.

Equations
Instances For
    theorem geometric_series_estimate {x : } (hx : 4 x) :
    ∑' (n : ), 2 ^ (-n / x) 2 ^ x

    Lemma 10.1.1

    @[irreducible]
    def C10_1_2 (a : ) :

    The constant used in estimate_x_shift.

    Equations
    Instances For
      theorem C10_1_2_def (a : ) :
      C10_1_2 a = 2 ^ (a ^ 3 + 2 * a + 1)
      theorem estimate_x_shift {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {r : } {K : XX} {x x' : X} [IsTwoSidedKernel a K] [CompatibleFunctions X (defaultA a)] [IsCancellative X (defaultτ a)] (ha : 4 a) {g : X} (hmg : Measurable g) (hg : MeasureTheory.eLpNorm g MeasureTheory.volume < ) (h2g : MeasureTheory.volume (Function.support g) < ) (hr : 0 < r) (hx : dist x x' r) :

      Lemma 10.1.2

      theorem C10_1_3_def (a : ) :
      C10_1_3 a = 2 ^ (a ^ 3 + 4 * a + 1)
      @[irreducible]
      def C10_1_3 (a : ) :

      The constant used in cotlar_control.

      Equations
      Instances For
        theorem cotlar_control {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {r R : } {K : XX} {x x' : X} [IsTwoSidedKernel a K] [CompatibleFunctions X (defaultA a)] [IsCancellative X (defaultτ a)] (ha : 4 a) {g : X} (hmg : Measurable g) (hg : MeasureTheory.eLpNorm g MeasureTheory.volume < ) (h2g : MeasureTheory.volume (Function.support g) < ) (hr : r Set.Ioc 0 R) (hx : dist x x' R / 4) :

        Lemma 10.1.3

        theorem C10_1_4_def (a : ) :
        C10_1_4 a = 2 ^ (a ^ 3 + 20 * a + 2)
        @[irreducible]
        def C10_1_4 (a : ) :

        The constant used in cotlar_set_F₂.

        Equations
        Instances For
          theorem cotlar_set_F₁ {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {r R : } {K : XX} {x : X} [IsTwoSidedKernel a K] [CompatibleFunctions X (defaultA a)] [IsCancellative X (defaultτ a)] (ha : 4 a) (hT : r > 0, MeasureTheory.HasBoundedStrongType (CZOperator K r) 2 2 MeasureTheory.volume MeasureTheory.volume (C_Ts a)) {g : X} (hmg : Measurable g) (hg : MeasureTheory.eLpNorm g MeasureTheory.volume < ) (h2g : MeasureTheory.volume (Function.support g) < ) :
          MeasureTheory.volume {x' : X | x' Metric.ball x (R / 4) 4 * globalMaximalFunction MeasureTheory.volume 1 (CZOperator K r g) x < CZOperator K r g x'‖ₑ} MeasureTheory.volume (Metric.ball x (R / 4)) / 4

          Part 1 of Lemma 10.1.4 about F₁.

          theorem cotlar_set_F₂ {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {r R : } {K : XX} {x : X} [IsTwoSidedKernel a K] [CompatibleFunctions X (defaultA a)] [IsCancellative X (defaultτ a)] (ha : 4 a) (hT : r > 0, MeasureTheory.HasBoundedStrongType (CZOperator K r) 2 2 MeasureTheory.volume MeasureTheory.volume (C_Ts a)) {g : X} (hmg : Measurable g) (hg : MeasureTheory.eLpNorm g MeasureTheory.volume < ) (h2g : MeasureTheory.volume (Function.support g) < ) :
          MeasureTheory.volume {x' : X | x' Metric.ball x (R / 4) (C10_1_4 a) * globalMaximalFunction MeasureTheory.volume 1 g x < CZOperator K r ((Metric.ball x (R / 2)).indicator g) x'‖ₑ} MeasureTheory.volume (Metric.ball x (R / 4)) / 4

          Part 2 of Lemma 10.1.4 about F₂.

          theorem C10_1_5_def (a : ) :
          C10_1_5 a = 2 ^ (a ^ 3 + 20 * a + 2)
          @[irreducible]
          def C10_1_5 (a : ) :

          The constant used in cotlar_estimate.

          Equations
          Instances For

            Lemma 10.1.5

            @[irreducible]
            def C10_1_6 (a : ) :

            The constant used in simple_nontangential_operator.

            Equations
            Instances For
              theorem C10_1_6_def (a : ) :
              C10_1_6 a = 2 ^ (a ^ 3 + 24 * a + 6)

              Lemma 10.1.6. The formal statement includes the measurability of the operator. See also simple_nontangential_operator_le

              This is the first step of the proof of Lemma 10.0.2, and should follow from 10.1.6 + monotone convergence theorem. (measurability should be proven without any restriction on r.)

              theorem small_annulus_right {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {K : XX} {x' : X} [IsTwoSidedKernel a K] [CompatibleFunctions X (defaultA a)] [IsCancellative X (defaultτ a)] (ha : 4 a) (hT : r > 0, MeasureTheory.HasBoundedStrongType (CZOperator K r) 2 2 MeasureTheory.volume MeasureTheory.volume (C_Ts a)) {f : X} (hmf : Measurable f) (hf : MeasureTheory.eLpNorm f MeasureTheory.volume < ) (h2f : MeasureTheory.volume (Function.support f) < ) {R₁ : } :
              Continuous fun (R₂ : ) => ∫ (y : X) in {y : X | dist x' y Set.Ioo R₁ R₂}, K x' y * f y

              Part of Lemma 10.1.7, reformulated

              theorem small_annulus_left {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {K : XX} {x' : X} [IsTwoSidedKernel a K] [CompatibleFunctions X (defaultA a)] [IsCancellative X (defaultτ a)] (ha : 4 a) (hT : r > 0, MeasureTheory.HasBoundedStrongType (CZOperator K r) 2 2 MeasureTheory.volume MeasureTheory.volume (C_Ts a)) {f : X} (hmf : Measurable f) (hf : MeasureTheory.eLpNorm f MeasureTheory.volume < ) (h2f : MeasureTheory.volume (Function.support f) < ) {R₂ : } :
              Continuous fun (R₁ : ) => ∫ (y : X) in {y : X | dist x' y Set.Ioo R₁ R₂}, K x' y * f y

              Part of Lemma 10.1.7, reformulated

              theorem nontangential_operator_boundary {X : Type u_1} {a : } [MetricSpace X] [MeasureTheory.DoublingMeasure X (defaultA a)] {K : XX} {x : X} [IsTwoSidedKernel a K] [CompatibleFunctions X (defaultA a)] [IsCancellative X (defaultτ a)] (ha : 4 a) {f : X} (hmf : Measurable f) (hf : MeasureTheory.eLpNorm f MeasureTheory.volume < ) (h2f : MeasureTheory.volume (Function.support f) < ) :
              nontangentialOperator K f x = ⨆ (R₁ : ), ⨆ (R₂ : ), ⨆ (_ : R₁ < R₂), ⨆ (x' : X), ⨆ (_ : dist x x' R₁), ∫ (y : X) in Metric.ball x' R₂ \ Metric.ball x' R₁, K x' y * f y‖ₑ

              Lemma 10.1.8.

              theorem C10_0_2_def (a : ) :
              C10_0_2 a = 2 ^ (3 * a ^ 3)
              @[irreducible]
              def C10_0_2 (a : ) :

              The constant used in nontangential_from_simple.

              Equations
              Instances For

                Lemma 10.0.2. The formal statement includes the measurability of the operator.