Documentation

Carleson.ToMathlib.Lorentz

def MeasureTheory.eLorentzNorm' {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} [ENorm ε] (f : αε) (p r : ENNReal) (μ : Measure α) :

The Lorentz norm of a function, for p < ∞

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    def MeasureTheory.eLorentzNorm {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} [ENorm ε] (f : αε) (p r : ENNReal) (μ : Measure α) :

    The Lorentz norm of a function

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem MeasureTheory.eLorentzNorm_eq_eLorentzNorm' {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} [ENorm ε] {f : αε} {p r : ENNReal} {μ : Measure α} (hp_ne_zero : p 0) (hp_ne_top : p ) :
      eLorentzNorm f p r μ = eLorentzNorm' f p r μ
      @[simp]
      theorem MeasureTheory.eLorentzNorm_zero {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} [ENorm ε] {f : αε} {p r : ENNReal} {μ : Measure α} (hp : p = 0) :
      eLorentzNorm f p r μ = 0
      @[simp]
      theorem MeasureTheory.eLorentzNorm_zero' {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} [ENorm ε] {f : αε} {p r : ENNReal} {μ : Measure α} (hr : r = 0) :
      eLorentzNorm f p r μ = 0
      theorem MeasureTheory.eLorentzNorm_zero_of_ae_zero {α : Type u_1} {ε' : Type u_3} {m0 : MeasurableSpace α} [TopologicalSpace ε'] [ENormedAddMonoid ε'] {p r : ENNReal} {μ : Measure α} {f : αε'} (h : f =ᶠ[ae μ] 0) :
      eLorentzNorm f p r μ = 0
      theorem MeasureTheory.eLorentzNorm'_mono {α : Type u_1} {ε' : Type u_3} {m0 : MeasurableSpace α} [TopologicalSpace ε'] [ENormedAddMonoid ε'] {p r : ENNReal} {μ : Measure α} {f g : αε'} (h : ∀ᵐ (x : α) μ, f x‖ₑ g x‖ₑ) :
      eLorentzNorm' f p r μ eLorentzNorm' g p r μ
      theorem MeasureTheory.eLorentzNorm_mono {α : Type u_1} {ε' : Type u_3} {m0 : MeasurableSpace α} [TopologicalSpace ε'] [ENormedAddMonoid ε'] {p r : ENNReal} {μ : Measure α} {f g : αε'} (h : ∀ᵐ (x : α) μ, f x‖ₑ g x‖ₑ) :
      eLorentzNorm f p r μ eLorentzNorm g p r μ
      @[simp]
      theorem MeasureTheory.eLorentzNorm_top_top {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} [ENorm ε] {μ : Measure α} {f : αε} :
      theorem MeasureTheory.eLorentzNorm_eq_eLpNorm {α : Type u_1} {ε' : Type u_3} {m0 : MeasurableSpace α} [TopologicalSpace ε'] [ENormedAddMonoid ε'] {p : ENNReal} {μ : Measure α} {f : αε'} (hf : AEStronglyMeasurable f μ) :
      eLorentzNorm f p p μ = eLpNorm f p μ
      theorem MeasureTheory.essSup_le_iSup {α : Type u_4} {β : Type u_5} {m : MeasurableSpace α} {μ : Measure α} [CompleteLattice β] (f : αβ) :
      essSup f μ ⨆ (i : α), f i
      theorem MeasureTheory.iSup_le_essSup {α : Type u_1} {m0 : MeasurableSpace α} {μ : Measure α} {f : αENNReal} (h : ∀ {x : α} {a : ENNReal}, a < f xμ {y : α | a < f y} 0) :
      ⨆ (x : α), f x essSup f μ
      theorem MeasureTheory.helper {f : ENNRealENNReal} {x : ENNReal} (hx : x ) (hf : ContinuousWithinAt f (Set.Ioi x) x) {a : ENNReal} (ha : a < f x) :
      volume {y : ENNReal | a < f y} 0
      theorem MeasureTheory.ContinuousWithinAt.ennreal_mul {X : Type u_4} [TopologicalSpace X] {f g : XENNReal} {s : Set X} {t : X} (hf : ContinuousWithinAt f s t) (hg : ContinuousWithinAt g s t) (h₁ : f t 0 g t ) (h₂ : g t 0 f t ) :
      ContinuousWithinAt (fun (x : X) => f x * g x) s t
      theorem MeasureTheory.ContinuousWithinAt.ennrpow_const {α : Type u_1} [TopologicalSpace α] {f : αENNReal} {s : Set α} {x : α} {p : } (hf : ContinuousWithinAt f s x) :
      ContinuousWithinAt (fun (x : α) => f x ^ p) s x
      theorem MeasureTheory.eLorentzNorm_eq_wnorm {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} [ENorm ε] {f : αε} {p : ENNReal} {μ : Measure α} (hp : p 0) :
      eLorentzNorm f p μ = wnorm f p μ
      theorem MeasureTheory.eLorentzNorm'_eq_integral_distribution_rpow {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} [ENorm ε] {f : αε} {p : ENNReal} {μ : Measure α} :
      eLorentzNorm' f p 1 μ = p * ∫⁻ (t : NNReal), distribution f (↑t) μ ^ p.toReal⁻¹
      theorem MeasureTheory.eLorentzNorm'_indicator {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {ε : Type u_4} [TopologicalSpace ε] [ENormedAddMonoid ε] {a : ε} (ha : a‖ₑ ) {s : Set α} (p_ne_zero : p 0) (p_ne_top : p ) :
      def MeasureTheory.MemLorentz {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} [ENorm ε] [TopologicalSpace ε] (f : αε) (p r : ENNReal) (μ : Measure α) :

      A function is in the Lorentz space L_{pr} if it is (strongly a.e.)-measurable and has finite Lorentz norm.

      Equations
      Instances For
        theorem MeasureTheory.MemLorentz_iff_MemLp {α : Type u_1} {ε' : Type u_3} {m0 : MeasurableSpace α} [TopologicalSpace ε'] [ENormedAddMonoid ε'] {p : ENNReal} {μ : Measure α} {f : αε'} :
        MemLorentz f p p μ MemLp f p μ
        theorem MeasureTheory.MemLorentz_of_MemLorentz_ge {α : Type u_1} {m0 : MeasurableSpace α} {ε : Type u_4} [ENorm ε] [TopologicalSpace ε] {f : αε} {p r₁ r₂ : ENNReal} {μ : Measure α} (r₁_pos : 0 < r₁) (r₁_le_r₂ : r₁ r₂) (hf : MemLorentz f p r₁ μ) :
        MemLorentz f p r₂ μ
        theorem MeasureTheory.MemLorentz.memLp {α : Type u_1} {ε' : Type u_3} {m0 : MeasurableSpace α} [TopologicalSpace ε'] [ENormedAddMonoid ε'] {p r : ENNReal} {μ : Measure α} {f : αε'} (hf : MemLorentz f p r μ) (h : r Set.Ioc 0 p) :
        MemLp f p μ
        def MeasureTheory.HasLorentzType {α : Type u_1} {m0 : MeasurableSpace α} {α' : Type u_4} {ε₁ : Type u_5} {ε₂ : Type u_6} {m : MeasurableSpace α'} [TopologicalSpace ε₁] [ENorm ε₁] [TopologicalSpace ε₂] [ENorm ε₂] (T : (αε₁)α'ε₂) (p r q s : ENNReal) (μ : Measure α) (ν : Measure α') (c : ENNReal) :

        An operator has Lorentz type (p, r, q, s) if it is bounded as a map from L^{q, s} to L^{p, r}. HasLorentzType T p r q s μ ν c means that T has Lorentz type (p, r, q, s) w.r.t. measures μ, ν and constant c.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          theorem MeasureTheory.hasStrongType_iff_hasLorentzType {α : Type u_1} {m0 : MeasurableSpace α} {α' : Type u_4} {m : MeasurableSpace α'} {ε₁ : Type u_7} {ε₂ : Type u_8} [TopologicalSpace ε₁] [ENormedAddMonoid ε₁] [TopologicalSpace ε₂] [ENormedAddMonoid ε₂] {T : (αε₁)α'ε₂} {p q : ENNReal} {μ : Measure α} {ν : Measure α'} {c : ENNReal} :
          HasStrongType T p q μ ν c HasLorentzType T p p q q μ ν c
          def MeasureTheory.HasRestrictedWeakType {α : Type u_1} {m0 : MeasurableSpace α} {α' : Type u_4} {ε₂ : Type u_6} {m : MeasurableSpace α'} [TopologicalSpace ε₂] [ENorm ε₂] {β : Type u_7} [Zero β] [One β] (T : (αβ)α'ε₂) (p p' : ENNReal) (μ : Measure α) (ν : Measure α') (c : ENNReal) :

          Defines when an operator "has restricted weak type". This is an even weaker version of HasBoundedWeakType.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            theorem MeasureTheory.HasRestrictedWeakType.without_finiteness {α : Type u_1} {m0 : MeasurableSpace α} {α' : Type u_4} {m : MeasurableSpace α'} {β : Type u_7} [Zero β] [One β] {ε₂ : Type u_8} [TopologicalSpace ε₂] [ENormedAddMonoid ε₂] {T : (αβ)α'ε₂} {p p' : ENNReal} (p_ne_zero : p 0) (p_ne_top : p ) (p'_ne_zero : p' 0) (p'_ne_top : p' ) {μ : Measure α} {ν : Measure α'} {c : NNReal} (c_pos : 0 < c) (hT : HasRestrictedWeakType T p p' μ ν c) (F : Set α) (G : Set α') :
            MeasurableSet FMeasurableSet GeLpNorm (T (F.indicator fun (x : α) => 1)) 1 (ν.restrict G) c * μ F ^ p⁻¹.toReal * ν G ^ p'⁻¹.toReal
            theorem MeasureTheory.Filter.mono_limsup {α : Type u_8} {β : Type u_9} [CompleteLattice α] {f : Filter β} {u v : βα} (h : ∀ (x : β), u x v x) :
            theorem MeasureTheory.Filter.limsup_le_of_le' {α : Type u_8} {β : Type u_9} [CompleteLattice α] {f : Filter β} {u : βα} {a : α} (h : ∀ᶠ (n : β) in f, u n a) :
            theorem MeasureTheory.ENNReal.rpow_add_rpow_le_add' {p : } (a b : ENNReal) (hp1 : 1 p) :
            a ^ p + b ^ p (a + b) ^ p
            theorem MeasureTheory.setLIntegral_Ici {f : NNRealENNReal} {a : NNReal} :
            ∫⁻ (t : NNReal) in Set.Ici a, f t = ∫⁻ (t : NNReal), f (t + a)
            theorem MeasureTheory.ENNReal.limsup_mul_const_of_ne_top {α : Type u_8} {f : Filter α} {u : αENNReal} {a : ENNReal} (ha_top : a ) :
            Filter.limsup (fun (x : α) => u x * a) f = Filter.limsup u f * a
            def MeasureTheory.WeaklyContinuous {α : Type u_1} {ε : Type u_2} {ε' : Type u_3} {m0 : MeasurableSpace α} {α' : Type u_4} {m : MeasurableSpace α'} [TopologicalSpace ε] [ENorm ε] [ENorm ε'] [SupSet ε] [Preorder ε] (T : (αε)α'ε') (p : ENNReal) (μ : Measure α) (ν : Measure α') :

            The weak continuity assumption neede for HasRestrictedWeakType.hasLorentzType_helper.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              theorem MeasureTheory.HasRestrictedWeakType.hasLorentzType_helper {α : Type u_1} {ε' : Type u_3} {m0 : MeasurableSpace α} {α' : Type u_4} {m : MeasurableSpace α'} [TopologicalSpace ε'] [ENormedSpace ε'] {p p' : ENNReal} {μ : Measure α} {ν : Measure α'} {c : NNReal} (c_pos : 0 < c) {T : (αNNReal)α'ε'} (hT : HasRestrictedWeakType T p p' μ ν c) (hpp' : p.HolderConjugate p') (weakly_cont_T : WeaklyContinuous T p μ ν) {G : Set α'} (hG : MeasurableSet G) (hG' : ν G < ) (T_subadditive : ∀ (f g : αNNReal), MemLorentz f p 1 μMemLorentz g p 1 μeLpNorm (T (f + g)) 1 (ν.restrict G) eLpNorm (T f) 1 (ν.restrict G) + eLpNorm (T g) 1 (ν.restrict G)) (T_submult : ∀ (f : αNNReal) (a : NNReal), eLpNorm (T (a f)) 1 (ν.restrict G) eLpNorm (a T f) 1 (ν.restrict G)) {f : αNNReal} (hf : Measurable f) (hf' : MemLorentz f p 1 μ) :
              eLpNorm (T f) 1 (ν.restrict G) c / p * eLorentzNorm f p 1 μ * ν G ^ p'⁻¹.toReal
              theorem MeasureTheory.HasRestrictedWeakType.hasLorentzType {α : Type u_1} {ε' : Type u_3} {m0 : MeasurableSpace α} {α' : Type u_4} {m : MeasurableSpace α'} [TopologicalSpace α] {𝕂 : Type u_8} [RCLike 𝕂] [TopologicalSpace ε'] [ENormedSpace ε'] {T : (α𝕂)α'ε'} {p p' : ENNReal} {μ : Measure α} [IsLocallyFiniteMeasure μ] {ν : Measure α'} {c : NNReal} (c_pos : 0 < c) (hT : HasRestrictedWeakType T p p' μ ν c) (hpp' : p.HolderConjugate p') (T_meas : ∀ {f : α𝕂}, MemLorentz f p 1 μAEStronglyMeasurable (T f) ν) (T_subadd : ∀ (f g : α𝕂) (x : α'), MemLorentz f p 1 μMemLorentz g p 1 μT (f + g) x‖ₑ T f x + T g x‖ₑ) (T_submul : ∀ (a : 𝕂) (f : α𝕂) (x : α'), T (a f) x‖ₑ a‖ₑ T f x‖ₑ) (weakly_cont_T : ∀ {f : α𝕂} {fs : α𝕂}, LocallyIntegrable f μ(∀ (n : ), AEStronglyMeasurable (fs n) μ)(∀ (a : α), Monotone fun (n : ) => fs n a)(∀ (a : α), Filter.Tendsto (fun (n : ) => fs n a) Filter.atTop (nhds (f a)))∀ (G : Set α'), eLpNorm (T f) 1 (ν.restrict G) Filter.limsup (fun (n : ) => eLpNorm (T (fs n)) 1 (ν.restrict G)) Filter.atTop) :
              HasLorentzType T p 1 p μ ν (4 * c / p)