Documentation

Carleson.MetricCarleson.Linearized

def lcoConvergent {X : Type u_1} {a : } [MetricSpace X] (K : XX) [KernelProofData a K] (Q : MeasureTheory.SimpleFunc X (Θ X)) (f : X) (n : ) (x : X) :

A monotone sequence of functions converging to linearizedCarlesonOperator.

Equations
Instances For
    theorem monotone_lcoConvergent {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] {Q : MeasureTheory.SimpleFunc X (Θ X)} {f : X} :
    theorem iSup_lcoConvergent {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] {Q : MeasureTheory.SimpleFunc X (Θ X)} {f : X} :
    ⨆ (n : ), lcoConvergent K Q f n = linearizedCarlesonOperator (⇑Q) K f
    theorem measurable_lcoConvergent {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] {Q : MeasureTheory.SimpleFunc X (Θ X)} {f : X} {n : } (mf : Measurable f) (nf : (fun (x : X) => f x) 1) :
    theorem linearized_metric_carleson {X : Type u_1} {a : } [MetricSpace X] {q q' : NNReal} {F G : Set X} {K : XX} [KernelProofData a K] {Q : MeasureTheory.SimpleFunc X (Θ X)} {f : X} [IsCancellative X (defaultτ a)] (hq : q Set.Ioc 1 2) (hqq' : q.HolderConjugate q') (mF : MeasurableSet F) (mG : MeasurableSet G) (mf : Measurable f) (nf : (fun (x : X) => f x) F.indicator 1) (hT : ∀ (θ : Θ X), MeasureTheory.HasBoundedStrongType (fun (x1 : X) (x2 : X) => linearizedNontangentialOperator (⇑Q) θ K x1 x2) 2 2 MeasureTheory.volume MeasureTheory.volume (C_Ts a)) :

    Theorem 1.1.2