Documentation

Carleson.MetricCarleson.Basic

We choose as metric space instance on Θ one given by an arbitrary ball. The metric given by all other balls are equivalent.

Equations
theorem MetricΘ.dist_eq_cdist {X : Type u_1} {a : } [MetricSpace X] [CompatibleFunctions X (defaultA a)] {f g : Θ X} :
dist f g = dist_{cancelPt X, 1} f g

The following two lemmas state that the distance could be equivalently given by any other cdist.

theorem MetricΘ.dist_le_cdist {X : Type u_1} {a : } [MetricSpace X] [CompatibleFunctions X (defaultA a)] {f g : Θ X} {x : X} {r : } (hr : 0 < r) :
dist f g (As (↑(defaultA a)) ((1 + dist (cancelPt X) x) / r)) * dist_{x, r} f g
theorem MetricΘ.cdist_le_dist {X : Type u_1} {a : } [MetricSpace X] [CompatibleFunctions X (defaultA a)] {f g : Θ X} {x : X} {r : } (hr : 0 < r) :
dist_{x, r} f g (As (↑(defaultA a)) (r + dist (cancelPt X) x)) * dist f g
theorem measurable_carlesonOperatorIntegrand {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] {Q : MeasureTheory.SimpleFunc X (Θ X)} {R₁ R₂ : } {f : X} (mf : Measurable f) :
Measurable fun (x : X) => carlesonOperatorIntegrand K (Q x) R₁ R₂ f x
theorem rightContinuous_integral_annulus {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] {R₁ R₂ : } {f : X} {x : X} (iof : MeasureTheory.IntegrableOn f (Set.Annulus.oo x R₁ R₂) MeasureTheory.volume) :
ContinuousWithinAt (fun (R : ) => (y : X) in Set.Annulus.oo x R R₂, f y) (Set.Ici R₁) R₁

Let f be integrable over an annulus with fixed radii R₁, R₂. Then fun R ↦ ∫ y in oo x R R₂, f y is right-continuous at R₁.

theorem leftContinuous_integral_annulus {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] {R₁ R₂ : } {f : X} {x : X} (iof : MeasureTheory.IntegrableOn f (Set.Annulus.oo x R₁ R₂) MeasureTheory.volume) :
ContinuousWithinAt (fun (R : ) => (y : X) in Set.Annulus.oo x R₁ R, f y) (Set.Iic R₂) R₂

Let f be integrable over an annulus with fixed radii R₁, R₂. Then fun R ↦ ∫ y in oo x R₁ R, f y is left-continuous at R₂.

theorem integrableOn_annulus_of_bounded {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] {R₁ R₂ : } {f : X} {x : X} (mf : MeasureTheory.AEStronglyMeasurable f MeasureTheory.volume) (nf : (fun (x : X) => f x) 1) :
theorem integrableOn_coi_inner_annulus' {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] {θ : Θ X} {R₁ R₂ : } {f : X} {x : X} (nf : MeasureTheory.IntegrableOn f (Set.Annulus.oo x R₁ R₂) MeasureTheory.volume) (hR₁ : 0 < R₁) :
MeasureTheory.IntegrableOn (fun (y : X) => K x y * f y * Complex.exp (Complex.I * (θ y))) (Set.Annulus.oo x R₁ R₂) MeasureTheory.volume

The integrand of carlesonOperatorIntegrand is integrable over the R₁, R₂ annulus.

theorem integrableOn_coi_inner_annulus₀ {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] {θ : Θ X} {R₁ R₂ : } {f : X} {x : X} (mf : MeasureTheory.AEStronglyMeasurable f MeasureTheory.volume) (nf : (fun (x : X) => f x) 1) (hR₁ : 0 < R₁) :
MeasureTheory.IntegrableOn (fun (y : X) => K x y * f y * Complex.exp (Complex.I * (θ y))) (Set.Annulus.oo x R₁ R₂) MeasureTheory.volume

The integrand of carlesonOperatorIntegrand is integrable over the R₁, R₂ annulus.

theorem integrableOn_coi_inner_annulus {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] {θ : Θ X} {R₁ R₂ : } {f : X} {x : X} (mf : Measurable f) (nf : (fun (x : X) => f x) 1) (hR₁ : 0 < R₁) :
MeasureTheory.IntegrableOn (fun (y : X) => K x y * f y * Complex.exp (Complex.I * (θ y))) (Set.Annulus.oo x R₁ R₂) MeasureTheory.volume

The integrand of carlesonOperatorIntegrand is integrable over the R₁, R₂ annulus.

theorem rightContinuous_carlesonOperatorIntegrand' {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] {θ : Θ X} {R₁ R₂ : } {f : X} {x : X} (mf : MeasureTheory.IntegrableOn f (Set.Annulus.oo x R₁ R₂) MeasureTheory.volume) (hR₁ : 0 < R₁) :
ContinuousWithinAt (fun (x_1 : ) => carlesonOperatorIntegrand K θ x_1 R₂ f x) (Set.Ici R₁) R₁
theorem rightContinuous_carlesonOperatorIntegrand {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] {θ : Θ X} {R₁ R₂ : } {f : X} {x : X} (mf : Measurable f) (nf : (fun (x : X) => f x) 1) (hR₁ : 0 < R₁) :
ContinuousWithinAt (fun (x_1 : ) => carlesonOperatorIntegrand K θ x_1 R₂ f x) (Set.Ici R₁) R₁
theorem leftContinuous_carlesonOperatorIntegrand' {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] {θ : Θ X} {R₁ R₂ : } {f : X} {x : X} (mf : MeasureTheory.IntegrableOn f (Set.Annulus.oo x R₁ R₂) MeasureTheory.volume) (hR₁ : 0 < R₁) :
ContinuousWithinAt (fun (x_1 : ) => carlesonOperatorIntegrand K θ R₁ x_1 f x) (Set.Iic R₂) R₂
theorem leftContinuous_carlesonOperatorIntegrand {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] {θ : Θ X} {R₁ R₂ : } {f : X} {x : X} (mf : Measurable f) (nf : (fun (x : X) => f x) 1) (hR₁ : 0 < R₁) :
ContinuousWithinAt (fun (x_1 : ) => carlesonOperatorIntegrand K θ R₁ x_1 f x) (Set.Iic R₂) R₂
theorem exists_rat_near_carlesonOperatorIntegrand' {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] (θ : Θ X) {R₁ R₂ : } {f : X} (x : X) (mf : MeasureTheory.IntegrableOn f (Set.Annulus.oo x R₁ R₂) MeasureTheory.volume) (hR₁ : 0 < R₁) (hR₂ : R₁ < R₂) {ε : } (εpos : 0 < ε) :
∃ (q₁ : ) (q₂ : ), R₁ < q₁ q₁ < q₂ q₂ < R₂ dist (carlesonOperatorIntegrand K θ (↑q₁) (↑q₂) f x) (carlesonOperatorIntegrand K θ R₁ R₂ f x) < ε

Given 0 < R₁ < R₂, move (R₁, R₂) to rational (q₁, q₂) where R₁ < q₁ < q₂ < R₂ and the norm of carlesonOperatorIntegrand changes by at most ε.

theorem exists_rat_near_carlesonOperatorIntegrand {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] (θ : Θ X) {R₁ R₂ : } {f : X} (x : X) (mf : Measurable f) (nf : (fun (x : X) => f x) 1) (hR₁ : 0 < R₁) (hR₂ : R₁ < R₂) {ε : } (εpos : 0 < ε) :
∃ (q₁ : ) (q₂ : ), R₁ < q₁ q₁ < q₂ q₂ < R₂ dist (carlesonOperatorIntegrand K θ (↑q₁) (↑q₂) f x) (carlesonOperatorIntegrand K θ R₁ R₂ f x) < ε

Given 0 < R₁ < R₂, move (R₁, R₂) to rational (q₁, q₂) where R₁ < q₁ < q₂ < R₂ and the norm of carlesonOperatorIntegrand changes by at most ε.

@[irreducible]
def C3_0_1 (a : ) (R₁ R₂ : NNReal) :

The constant used in the proof of int-continuous.

Equations
Instances For
    theorem C3_0_1_def (a : ) (R₁ R₂ : NNReal) :
    C3_0_1 a R₁ R₂ = 2 ^ a ^ 3 * (2 * R₂ / R₁) ^ a
    theorem lintegral_inv_vol_le {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] {x : X} {R₁ R₂ : NNReal} (hR₁ : 0 < R₁) (hR₂ : R₁ < R₂) :
    ∫⁻ (y : X) in Set.Annulus.oo x R₁ R₂, (vol x y)⁻¹ ↑((2 * R₂ / R₁) ^ a)
    theorem edist_carlesonOperatorIntegrand_le {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] {θ ϑ : Θ X} {f : X} {x : X} {R₁ R₂ : NNReal} (mf : Measurable f) (nf : (fun (x : X) => f x) 1) (hR₁ : 0 < R₁) :
    edist (carlesonOperatorIntegrand K θ (↑R₁) (↑R₂) f x) (carlesonOperatorIntegrand K ϑ (↑R₁) (↑R₂) f x) (C3_0_1 a R₁ R₂) * edist_{x, dist (cancelPt X) x + R₂} θ ϑ
    theorem dist_carlesonOperatorIntegrand_le {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] {θ ϑ : Θ X} {f : X} {x : X} {R₁ R₂ : NNReal} (mf : Measurable f) (nf : (fun (x : X) => f x) 1) (hR₁ : 0 < R₁) :
    dist (carlesonOperatorIntegrand K θ (↑R₁) (↑R₂) f x) (carlesonOperatorIntegrand K ϑ (↑R₁) (↑R₂) f x) (C3_0_1 a R₁ R₂) * dist_{x, dist (cancelPt X) x + R₂} θ ϑ
    theorem continuous_carlesonOperatorIntegrand {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] {R₁ R₂ : } {f : X} {x : X} (mf : Measurable f) (nf : (fun (x : X) => f x) 1) (hR₁ : 0 < R₁) :
    Continuous fun (x_1 : Θ X) => carlesonOperatorIntegrand K x_1 R₁ R₂ f x
    theorem enorm_carlesonOperatorIntegrand_le {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] {θ : Θ X} {f : X} {x : X} {R₁ R₂ : NNReal} (nf : (fun (x : X) => f x) 1) (hR₁ : 0 < R₁) :
    carlesonOperatorIntegrand K θ (↑R₁) (↑R₂) f x‖ₑ (C3_0_1 a R₁ R₂)
    theorem carlesonOperatorIntegrand_measurable {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] {R₁ R₂ : } {f : X} {θ : Θ X} (mf : MeasureTheory.AEStronglyMeasurable f MeasureTheory.volume) :
    theorem linearizedCarlesonOperator_measurable {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] {f : X} {θ : Θ X} (hf : MeasureTheory.LocallyIntegrable f MeasureTheory.volume) :
    Measurable (linearizedCarlesonOperator (fun (x : X) => θ) K f)
    theorem linearizedCarlesonOperator_add_le_add_linearizedCarlesonOperator {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] {x : X} {f g : X} (hf : MeasureTheory.LocallyIntegrable f MeasureTheory.volume) (hg : MeasureTheory.LocallyIntegrable g MeasureTheory.volume) {θ : Θ X} :
    linearizedCarlesonOperator (fun (x : X) => θ) K (f + g) x linearizedCarlesonOperator (fun (x : X) => θ) K f x + linearizedCarlesonOperator (fun (x : X) => θ) K g x
    theorem tendsto_carlesonOperatorIntegrand_of_dominated_convergence {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] {θ : Θ X} {R₁ R₂ : } {f : X} {x : X} (hR₁ : 0 < R₁) {l : Filter } [l.IsCountablyGenerated] {F : X} (bound : X) (hF_meas : ∀ᶠ (n : ) in l, MeasureTheory.AEStronglyMeasurable (F n) MeasureTheory.volume) (h_bound : ∀ᶠ (n : ) in l, ∀ᵐ (a : X), F n a bound a) (bound_integrable : MeasureTheory.IntegrableOn (fun (y : X) => bound y) (Set.Annulus.oo x R₁ R₂) MeasureTheory.volume) (h_lim : ∀ᵐ (a : X), Filter.Tendsto (fun (n : ) => F n a) l (nhds (f a))) :
    Filter.Tendsto (fun (n : ) => carlesonOperatorIntegrand K θ R₁ R₂ (F n) x) l (nhds (carlesonOperatorIntegrand K θ R₁ R₂ f x))
    theorem linearizedCarlesonOperator_le_liminf_linearizedCarlesonOperator_of_tendsto {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] {f : X} {x : X} {Q : XΘ X} {l : Filter } [l.IsCountablyGenerated] [l.NeBot] {F : X} (bound : X) (hF_meas : ∀ᶠ (n : ) in l, MeasureTheory.AEStronglyMeasurable (F n) MeasureTheory.volume) (h_bound : ∀ᶠ (n : ) in l, ∀ᵐ (a : X), F n a bound a) (bound_integrable : MeasureTheory.LocallyIntegrable bound MeasureTheory.volume) (h_lim : ∀ᵐ (a : X), Filter.Tendsto (fun (n : ) => F n a) l (nhds (f a))) :
    theorem carlesonOperator_le_liminf_carlesonOperator_of_tendsto {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] {f : X} {x : X} {l : Filter } [l.IsCountablyGenerated] [l.NeBot] {F : X} (bound : X) (hF_meas : ∀ᶠ (n : ) in l, MeasureTheory.AEStronglyMeasurable (F n) MeasureTheory.volume) (h_bound : ∀ᶠ (n : ) in l, ∀ᵐ (a : X), F n a bound a) (bound_integrable : MeasureTheory.LocallyIntegrable bound MeasureTheory.volume) (h_lim : ∀ᵐ (a : X), Filter.Tendsto (fun (n : ) => F n a) l (nhds (f a))) :
    carlesonOperator K f x Filter.liminf (fun (n : ) => carlesonOperator K (F n) x) l