Documentation

Carleson.ToMathlib.MeasureTheory.Measure.IsDoubling

def As (A : NNReal) (s : ) :

The blow-up factor of repeatedly increasing the size of balls.

Equations
Instances For

    A doubling measure is a measure on a metric space with the condition that doubling the radius of a ball only increases the volume by a constant factor, independent of the ball.

    Instances
      theorem MeasureTheory.ball_subset_ball_of_le {X : Type u_1} [PseudoMetricSpace X] {x x' : X} {r r' : } (hr : dist x x' + r' r) :
      theorem MeasureTheory.dist_lt_of_not_disjoint_ball {X : Type u_1} [PseudoMetricSpace X] {x x' : X} {r r' : } (hd : ¬Disjoint (Metric.ball x r) (Metric.ball x' r')) :
      dist x x' < r + r'
      theorem MeasureTheory.IsDoubling.mono {X : Type u_1} [PseudoMetricSpace X] {A : NNReal} [MeasurableSpace X] {μ : Measure X} [μ.IsDoubling A] {A' : NNReal} (h : A A') :
      theorem MeasureTheory.measure_ball_two_le_same_iterate {X : Type u_1} [PseudoMetricSpace X] {A : NNReal} [MeasurableSpace X] {μ : Measure X} [μ.IsDoubling A] (x : X) (r : ) (n : ) :
      μ (Metric.ball x (2 ^ n * r)) A ^ n * μ (Metric.ball x r)
      theorem MeasureTheory.measure_ball_four_le_same {X : Type u_1} [PseudoMetricSpace X] {A : NNReal} [MeasurableSpace X] {μ : Measure X} [μ.IsDoubling A] (x : X) (r : ) :
      μ (Metric.ball x (4 * r)) A ^ 2 * μ (Metric.ball x r)
      theorem MeasureTheory.measure_ball_le_same {X : Type u_1} [PseudoMetricSpace X] {A : NNReal} [MeasurableSpace X] {μ : Measure X} [μ.IsDoubling A] (x : X) {r s r' : } (hsp : 0 < s) (hs : r' s * r) :
      μ (Metric.ball x r') (As A s) * μ (Metric.ball x r)
      theorem MeasureTheory.measure_ball_le_of_dist_le' {X : Type u_1} [PseudoMetricSpace X] {A : NNReal} [MeasurableSpace X] {μ : Measure X} [μ.IsDoubling A] {x x' : X} {r r' s : } (hs : 0 < s) (h : dist x x' + r' s * r) :
      μ (Metric.ball x' r') (As A s) * μ (Metric.ball x r)
      theorem MeasureTheory.Nat.exists_max_image {α : Type u_2} {s : Set α} (hs : s.Nonempty) {f : α} (h : BddAbove (f '' s)) :
      xs, ys, f y f x
      theorem MeasureTheory.measureReal_ball_le_same {X : Type u_1} [PseudoMetricSpace X] {A : NNReal} [MeasurableSpace X] {μ : Measure X} [μ.IsDoubling A] [ProperSpace X] [IsFiniteMeasureOnCompacts μ] (x : X) {r s r' : } (hsp : 0 < s) (hs : r' s * r) :
      μ.real (Metric.ball x r') (As A s) * μ.real (Metric.ball x r)
      theorem MeasureTheory.measureReal_ball_le_same' {X : Type u_1} [PseudoMetricSpace X] {A : NNReal} [MeasurableSpace X] {μ : Measure X} [μ.IsDoubling A] [ProperSpace X] [IsFiniteMeasureOnCompacts μ] (x : X) {r t : } (ht : 0 < t) (h't : t 1) :
      μ.real (Metric.ball x r) A * t ^ (-Real.logb 2 A) * μ.real (Metric.ball x (t * r))

      Version of measureReal_ball_le_same without ceiling function.

      theorem MeasureTheory.measureNNReal_ball_le_of_dist_le' {X : Type u_1} [PseudoMetricSpace X] {A : NNReal} [MeasurableSpace X] {μ : Measure X} [μ.IsDoubling A] [ProperSpace X] [IsFiniteMeasureOnCompacts μ] {x x' : X} {r r' s : } (hs : 0 < s) (h : dist x x' + r' s * r) :
      (μ (Metric.ball x' r')).toNNReal As A s * (μ (Metric.ball x r)).toNNReal