class
MeasureTheory.Measure.IsDoubling
{X : Type u_1}
[MeasurableSpace X]
[PseudoMetricSpace X]
(μ : Measure X)
(A : outParam NNReal)
:
A doubling measure is a measure on a metric space with the condition that doubling the radius of a ball only increases the volume by a constant factor, independent of the ball.
Instances
theorem
MeasureTheory.ball_subset_ball_of_le
{X : Type u_1}
[PseudoMetricSpace X]
{x x' : X}
{r r' : ℝ}
(hr : dist x x' + r' ≤ r)
:
theorem
MeasureTheory.dist_lt_of_not_disjoint_ball
{X : Type u_1}
[PseudoMetricSpace X]
{x x' : X}
{r r' : ℝ}
(hd : ¬Disjoint (Metric.ball x r) (Metric.ball x' r'))
:
theorem
MeasureTheory.eq_zero_of_isDoubling_zero
{X : Type u_1}
[PseudoMetricSpace X]
[MeasurableSpace X]
(μ : Measure X)
[hμ : μ.IsDoubling 0]
:
theorem
MeasureTheory.eq_zero_of_isDoubling_lt_one
{X : Type u_1}
[PseudoMetricSpace X]
{A : NNReal}
[MeasurableSpace X]
(μ : Measure X)
[μ.IsDoubling A]
[ProperSpace X]
[IsFiniteMeasureOnCompacts μ]
(hA : A < 1)
:
theorem
MeasureTheory.IsDoubling.mono
{X : Type u_1}
[PseudoMetricSpace X]
{A : NNReal}
[MeasurableSpace X]
{μ : Measure X}
[μ.IsDoubling A]
{A' : NNReal}
(h : A ≤ A')
:
μ.IsDoubling A'
theorem
MeasureTheory.measure_ball_two_le_same_iterate
{X : Type u_1}
[PseudoMetricSpace X]
{A : NNReal}
[MeasurableSpace X]
{μ : Measure X}
[μ.IsDoubling A]
(x : X)
(r : ℝ)
(n : ℕ)
:
theorem
MeasureTheory.measure_ball_four_le_same
{X : Type u_1}
[PseudoMetricSpace X]
{A : NNReal}
[MeasurableSpace X]
{μ : Measure X}
[μ.IsDoubling A]
(x : X)
(r : ℝ)
:
theorem
MeasureTheory.measure_ball_le_same
{X : Type u_1}
[PseudoMetricSpace X]
{A : NNReal}
[MeasurableSpace X]
{μ : Measure X}
[μ.IsDoubling A]
(x : X)
{r s r' : ℝ}
(hsp : 0 < s)
(hs : r' ≤ s * r)
:
theorem
MeasureTheory.measure_ball_le_of_dist_le'
{X : Type u_1}
[PseudoMetricSpace X]
{A : NNReal}
[MeasurableSpace X]
{μ : Measure X}
[μ.IsDoubling A]
{x x' : X}
{r r' s : ℝ}
(hs : 0 < s)
(h : dist x x' + r' ≤ s * r)
:
theorem
MeasureTheory.isOpenPosMeasure_of_isDoubling
{X : Type u_1}
[PseudoMetricSpace X]
{A : NNReal}
[MeasurableSpace X]
(μ : Measure X)
[μ.IsDoubling A]
[NeZero μ]
:
instance
MeasureTheory.instIsUnifLocDoublingMeasure_carleson
{X : Type u_1}
[PseudoMetricSpace X]
{A : NNReal}
[MeasurableSpace X]
{μ : Measure X}
[μ.IsDoubling A]
:
theorem
MeasureTheory.IsDoubling.measure_ball_lt_top
{X : Type u_1}
[PseudoMetricSpace X]
{A : NNReal}
[MeasurableSpace X]
{μ : Measure X}
[μ.IsDoubling A]
[IsLocallyFiniteMeasure μ]
{x : X}
{r : ℝ}
:
theorem
MeasureTheory.IsDoubling.allBallsCoverBalls
{X : Type u_1}
[PseudoMetricSpace X]
{A : NNReal}
[MeasurableSpace X]
(μ : Measure X)
[μ.IsDoubling A]
[OpensMeasurableSpace X]
[NeZero μ]
[IsLocallyFiniteMeasure μ]
:
AllBallsCoverBalls X 2 ⌈As A 9⌉₊
theorem
MeasureTheory.measureReal_ball_two_le_same
{X : Type u_1}
[PseudoMetricSpace X]
{A : NNReal}
[MeasurableSpace X]
{μ : Measure X}
[μ.IsDoubling A]
[ProperSpace X]
[IsFiniteMeasureOnCompacts μ]
(x : X)
(r : ℝ)
:
theorem
MeasureTheory.measureReal_ball_two_le_same_iterate
{X : Type u_1}
[PseudoMetricSpace X]
{A : NNReal}
[MeasurableSpace X]
{μ : Measure X}
[μ.IsDoubling A]
[ProperSpace X]
[IsFiniteMeasureOnCompacts μ]
(x : X)
(r : ℝ)
(n : ℕ)
:
theorem
MeasureTheory.measureReal_ball_pos
{X : Type u_1}
[PseudoMetricSpace X]
[MeasurableSpace X]
{μ : Measure X}
[ProperSpace X]
[IsFiniteMeasureOnCompacts μ]
[μ.IsOpenPosMeasure]
(x : X)
{r : ℝ}
(hr : 0 < r)
:
theorem
MeasureTheory.one_le_A
{X : Type u_1}
[PseudoMetricSpace X]
{A : NNReal}
[MeasurableSpace X]
(μ : Measure X)
[μ.IsDoubling A]
[ProperSpace X]
[IsFiniteMeasureOnCompacts μ]
[Nonempty X]
[μ.IsOpenPosMeasure]
:
theorem
MeasureTheory.A_pos
{X : Type u_1}
[PseudoMetricSpace X]
{A : NNReal}
[MeasurableSpace X]
(μ : Measure X)
[μ.IsDoubling A]
[ProperSpace X]
[IsFiniteMeasureOnCompacts μ]
[Nonempty X]
[μ.IsOpenPosMeasure]
:
theorem
MeasureTheory.A_pos'
{X : Type u_1}
[PseudoMetricSpace X]
{A : NNReal}
[MeasurableSpace X]
(μ : Measure X)
[μ.IsDoubling A]
[ProperSpace X]
[IsFiniteMeasureOnCompacts μ]
[Nonempty X]
[μ.IsOpenPosMeasure]
:
theorem
MeasureTheory.As_pos
{X : Type u_1}
[PseudoMetricSpace X]
{A : NNReal}
[MeasurableSpace X]
(μ : Measure X)
[μ.IsDoubling A]
[ProperSpace X]
[IsFiniteMeasureOnCompacts μ]
[Nonempty X]
[μ.IsOpenPosMeasure]
(s : ℝ)
:
theorem
MeasureTheory.As_pos'
{X : Type u_1}
[PseudoMetricSpace X]
{A : NNReal}
[MeasurableSpace X]
(μ : Measure X)
[μ.IsDoubling A]
[ProperSpace X]
[IsFiniteMeasureOnCompacts μ]
[Nonempty X]
[μ.IsOpenPosMeasure]
(s : ℝ)
:
theorem
MeasureTheory.measureReal_ball_four_le_same
{X : Type u_1}
[PseudoMetricSpace X]
{A : NNReal}
[MeasurableSpace X]
{μ : Measure X}
[μ.IsDoubling A]
[ProperSpace X]
[IsFiniteMeasureOnCompacts μ]
(x : X)
(r : ℝ)
:
theorem
MeasureTheory.measureReal_ball_le_same
{X : Type u_1}
[PseudoMetricSpace X]
{A : NNReal}
[MeasurableSpace X]
{μ : Measure X}
[μ.IsDoubling A]
[ProperSpace X]
[IsFiniteMeasureOnCompacts μ]
(x : X)
{r s r' : ℝ}
(hsp : 0 < s)
(hs : r' ≤ s * r)
:
theorem
MeasureTheory.measureReal_ball_le_same'
{X : Type u_1}
[PseudoMetricSpace X]
{A : NNReal}
[MeasurableSpace X]
{μ : Measure X}
[μ.IsDoubling A]
[ProperSpace X]
[IsFiniteMeasureOnCompacts μ]
(x : X)
{r t : ℝ}
(ht : 0 < t)
(h't : t ≤ 1)
:
Version of measureReal_ball_le_same without ceiling function.
theorem
MeasureTheory.measureNNReal_ball_le_of_dist_le'
{X : Type u_1}
[PseudoMetricSpace X]
{A : NNReal}
[MeasurableSpace X]
{μ : Measure X}
[μ.IsDoubling A]
[ProperSpace X]
[IsFiniteMeasureOnCompacts μ]
{x x' : X}
{r r' s : ℝ}
(hs : 0 < s)
(h : dist x x' + r' ≤ s * r)
:
theorem
MeasureTheory.Subsingleton.ball_eq
{α : Type u_1}
[PseudoMetricSpace α]
[Subsingleton α]
{x : α}
{r : ℝ}
:
instance
MeasureTheory.InnerProductSpace.IsDoubling
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[MeasurableSpace E]
[BorelSpace E]
[FiniteDimensional ℝ E]
:
volume.IsDoubling (2 ^ Module.finrank ℝ E)