Proposition 2.0.2 #
theorem
discrete_carleson
(X : Type u_1)
{a : ℕ}
{q : ℝ}
{K : X → X → ℂ}
{σ₁ σ₂ : X → ℤ}
{F G : Set X}
[MetricSpace X]
[ProofData a q K σ₁ σ₂ F G]
[TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)]
:
∃ (G' : Set X),
MeasurableSet G' ∧ 2 * MeasureTheory.volume G' ≤ MeasureTheory.volume G ∧ ∀ (f : X → ℂ),
Measurable f →
(∀ (x : X), ‖f x‖ ≤ F.indicator 1 x) →
∫⁻ (x : X) in G \ G', ↑‖carlesonSum Set.univ f x‖₊ ≤ ↑(C2_0_2 (↑a) (nnq X)) * MeasureTheory.volume G ^ (1 - q⁻¹) * MeasureTheory.volume F ^ q⁻¹