Documentation

Carleson.Discrete.ExceptionalSet

def C5_2_9 (X : Type u_1) {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] (n : ) :

The constant in Lemma 5.2.9, with value D ^ (1 - κ * Z * (n + 1))

Equations
Instances For
    theorem third_exception_rearrangement {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] :
    (∑' (n : ) (k : ), if k n then ∑' (j : ), (C5_2_9 X n) * 2 ^ (9 * a - j) * 2 ^ (n + k + 3) * MeasureTheory.volume G else 0) = ∑' (k : ), 2 ^ (9 * a + 4 + 2 * k) * (defaultD a) ^ (1 - defaultκ a * (defaultZ a) * (k + 1)) * MeasureTheory.volume G * ∑' (n : ), if k n then (2 * (defaultD a) ^ (-defaultκ a * (defaultZ a))) ^ (n - k) else 0

    A rearrangement for Lemma 5.2.9 that does not require the tile structure.

    Section 5.2 and Lemma 5.1.1 #

    theorem first_exception' {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] :
    MeasureTheory.volume G₁ 2 ^ (-5) * MeasureTheory.volume G

    Lemma 5.2.1

    theorem first_exception {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] :
    MeasureTheory.volume G₁ 2 ^ (-4) * MeasureTheory.volume G
    theorem dense_cover {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (k : ) :
    MeasureTheory.volume (⋃ i𝓒 k, i) 2 ^ (k + 1) * MeasureTheory.volume G

    Lemma 5.2.2

    theorem pairwiseDisjoint_E1 {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {k n : } :
    (𝔐 k n).PairwiseDisjoint E₁

    Lemma 5.2.3

    theorem dyadic_union {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {k n l : } {x : X} (hx : x setA l k n) :
    ∃ (i : Grid X), x i i setA l k n

    Lemma 5.2.4

    theorem iUnion_MsetA_eq_setA {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {k n l : } :
    iMsetA l k n, i = setA l k n
    theorem john_nirenberg_aux1 {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {k n l : } {x : X} {L : Grid X} (mL : L Grid.maxCubes (MsetA l k n)) (mx : x setA (l + 1) k n) (mx₂ : x L) :
    2 ^ (n + 1) stackSize {q_1 : 𝔓 X | q_1 𝔐 k n 𝓘 q_1 L} x

    Equation (5.2.7) in the proof of Lemma 5.2.5.

    theorem john_nirenberg_aux2 {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {k n l : } {L : Grid X} (mL : L Grid.maxCubes (MsetA l k n)) :
    2 * MeasureTheory.volume (setA (l + 1) k n L) MeasureTheory.volume L

    Equation (5.2.11) in the proof of Lemma 5.2.5.

    theorem john_nirenberg {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {k n l : } :
    MeasureTheory.volume (setA l k n) 2 ^ (k + 1 - l) * MeasureTheory.volume G

    Lemma 5.2.5

    theorem second_exception {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] :
    MeasureTheory.volume G₂ 2 ^ (-2) * MeasureTheory.volume G

    Lemma 5.2.6

    def layervol {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] (k n : ) (t : ) :

    The volume of a "layer" in the key function of Lemma 5.2.7.

    Equations
    Instances For
      theorem indicator_sum_eq_natCast {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {x : X} {s : Finset (𝔓 X)} :
      ms, (↑(𝓘 m)).indicator 1 x = (∑ ms, (↑(𝓘 m)).indicator 1 x)
      theorem layervol_eq_zero_of_lt {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {k n : } {t : } (ht : (𝔐 k n).toFinset.card < t) :
      layervol k n t = 0
      theorem lintegral_Ioc_layervol_one {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {k n l : } :
      ∫⁻ (t : ) in Set.Ioc (↑l) (l + 1), layervol k n t = layervol k n (l + 1)
      theorem antitone_layervol {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {k n : } :
      Antitone fun (t : ) => layervol k n t
      theorem lintegral_Ioc_layervol_le {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {k n a✝ b : } :
      ∫⁻ (t : ) in Set.Ioc a✝ b, layervol k n t (b - a✝) * layervol k n (a✝ + 1)
      theorem top_tiles_aux {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {k n : } :
      mFinset.filter (fun (p : 𝔓 X) => p 𝔐 k n) Finset.univ, MeasureTheory.volume (𝓘 m) = ∫⁻ (t : ) in Set.Ioc 0 ((𝔐 k n).toFinset.card * 2 ^ (n + 1)), layervol k n t
      theorem top_tiles {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {k n : } :
      mFinset.filter (fun (p : 𝔓 X) => p 𝔐 k n) Finset.univ, MeasureTheory.volume (𝓘 m) 2 ^ (n + k + 3) * MeasureTheory.volume G

      Lemma 5.2.7

      theorem tree_count {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {k n j : } {x : X} :
      (stackSize (𝔘₁ k n j) x) 2 ^ (9 * a - j) * (stackSize (𝔐 k n) x)

      Lemma 5.2.8

      theorem boundary_exception {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {n : } {u : 𝔓 X} :
      MeasureTheory.volume (⋃ i𝓛 n u, i) (C5_2_9 X n) * MeasureTheory.volume (𝓘 u)

      Lemma 5.2.9

      theorem third_exception_aux {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] {k n j : } :
      MeasureTheory.volume (⋃ p𝔏₄ k n j, (𝓘 p)) (C5_2_9 X n) * 2 ^ (9 * a - j) * 2 ^ (n + k + 3) * MeasureTheory.volume G
      theorem third_exception {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] :
      MeasureTheory.volume G₃ 2 ^ (-4) * MeasureTheory.volume G

      Lemma 5.2.10

      theorem exceptional_set {X : Type u_1} {a : } {q : } {K : XX} {σ₁ σ₂ : X} {F G : Set X} [MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q (defaultD a) (defaultκ a) (defaultS X) (cancelPt X)] :
      MeasureTheory.volume G' 2 ^ (-1) * MeasureTheory.volume G

      Lemma 5.1.1