Documentation

Carleson.Classical.Helper

theorem Real.volume_uIoc {a b : } :
MeasureTheory.volume (Ι a b) = ENNReal.ofReal |b - a|
theorem intervalIntegral.integral_conj' {μ : MeasureTheory.Measure } {𝕜 : Type} [RCLike 𝕜] {f : 𝕜} {a b : } :
∫ (x : ) in a..b, (starRingEnd 𝕜) (f x)μ = (starRingEnd 𝕜) (∫ (x : ) in a..b, f xμ)
theorem intervalIntegrable_of_bdd {a b δ : } {g : } (measurable_g : Measurable g) (bddg : ∀ (x : ), g x δ) :
IntervalIntegrable g MeasureTheory.volume a b
theorem IntervalIntegrable.bdd_mul {F : Type} [NormedDivisionRing F] {f g : F} {a b : } {μ : MeasureTheory.Measure } (hg : IntervalIntegrable g μ a b) (hm : MeasureTheory.AEStronglyMeasurable f μ) (hfbdd : ∃ (C : ), ∀ (x : ), f x C) :
IntervalIntegrable (fun (x : ) => f x * g x) μ a b
theorem IntervalIntegrable.mul_bdd {F : Type} [NormedField F] {f g : F} {a b : } {μ : MeasureTheory.Measure } (hf : IntervalIntegrable f μ a b) (hm : MeasureTheory.AEStronglyMeasurable g μ) (hgbdd : ∃ (C : ), ∀ (x : ), g x C) :
IntervalIntegrable (fun (x : ) => f x * g x) μ a b
theorem IntegrableOn.sub {α β : Type} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup β] {s : Set α} {f g : αβ} (hf : MeasureTheory.IntegrableOn f s μ) (hg : MeasureTheory.IntegrableOn g s μ) :
theorem ConditionallyCompleteLattice.le_biSup {α : Type} [ConditionallyCompleteLinearOrder α] {ι : Type} [Nonempty ι] {f : ια} {s : Set ι} {a : α} (hfs : BddAbove (f '' s)) (ha : is, f i = a) :
a is, f i
theorem Function.Periodic.exists_mem_Ico₀' {α β : Type} {f : αβ} {c : α} [LinearOrderedAddCommGroup α] [Archimedean α] (h : Function.Periodic f c) (hc : 0 < c) (x : α) :
∃ (n : ), x - n c Set.Ico 0 c f x = f (x - n c)
theorem Function.Periodic.exists_mem_Ico' {α β : Type} {f : αβ} {c : α} [LinearOrderedAddCommGroup α] [Archimedean α] (h : Function.Periodic f c) (hc : 0 < c) (x a : α) :
∃ (n : ), x - n c Set.Ico a (a + c) f x = f (x - n c)