Documentation

Mathlib.Data.ENat.Basic

Definition and basic properties of extended natural numbers #

In this file we define ENat (notation: ℕ∞) to be WithTop and prove some basic lemmas about this type.

Implementation details #

There are two natural coercions from to WithTop ℕ = ENat: WithTop.some and Nat.cast. In Lean 3, this difference was hidden in typeclass instances. Since these instances were definitionally equal, we did not duplicate generic lemmas about WithTop α and WithTop.some coercion for ENat and Nat.cast coercion. If you need to apply a lemma about WithTop, you may either rewrite back and forth using ENat.some_eq_coe, or restate the lemma for ENat.

TODO #

Unify ENat.add_iSup/ENat.iSup_add with ENNReal.add_iSup/ENNReal.iSup_add. The key property of ENat and ENNReal we are using is that all a are either absorbing for addition (a + b = a for all b), or that it's order-cancellable (a + b ≤ a + c → b ≤ c for all b, c), and similarly for multiplication.

@[simp]

Lemmas about WithTop expect (and can output) WithTop.some but the normal form for coercion ℕ → ℕ∞ is Nat.cast.

theorem ENat.coe_inj {a b : } :
a = b a = b
theorem ENat.coe_zero :
0 = 0
theorem ENat.coe_one :
1 = 1
theorem ENat.coe_add (m n : ) :
↑(m + n) = m + n
@[simp]
theorem ENat.coe_sub (m n : ) :
↑(m - n) = m - n
@[simp]
theorem ENat.coe_mul (m n : ) :
↑(m * n) = m * n
@[simp]
theorem ENat.mul_top {m : ℕ∞} (hm : m 0) :
@[simp]
theorem ENat.top_mul {m : ℕ∞} (hm : m 0) :
theorem ENat.mul_top' {m : ℕ∞} :
m * = if m = 0 then 0 else

A version of mul_top where the RHS is stated as an ite

theorem ENat.top_mul' {m : ℕ∞} :
* m = if m = 0 then 0 else

A version of top_mul where the RHS is stated as an ite

theorem ENat.top_pow {n : } (n_pos : 0 < n) :
def ENat.lift (x : ℕ∞) (h : x < ) :

Convert a ℕ∞ to a using a proof that it is not infinite.

Equations
@[simp]
theorem ENat.coe_lift (x : ℕ∞) (h : x < ) :
(x.lift h) = x
@[simp]
theorem ENat.lift_coe (n : ) :
(↑n).lift = n
@[simp]
theorem ENat.lift_lt_iff {x : ℕ∞} {h : x < } {n : } :
x.lift h < n x < n
@[simp]
theorem ENat.lift_le_iff {x : ℕ∞} {h : x < } {n : } :
x.lift h n x n
@[simp]
theorem ENat.lt_lift_iff {x : } {n : ℕ∞} {h : n < } :
x < n.lift h x < n
@[simp]
theorem ENat.le_lift_iff {x : } {n : ℕ∞} {h : n < } :
x n.lift h x n
@[simp]
theorem ENat.lift_zero :
lift 0 = 0
@[simp]
theorem ENat.lift_one :
lift 1 = 1
@[simp]
@[simp]
theorem ENat.add_lt_top {a b : ℕ∞} :
a + b < a < b <
@[simp]
theorem ENat.lift_add (a b : ℕ∞) (h : a + b < ) :
(a + b).lift h = a.lift + b.lift

Conversion of ℕ∞ to sending to 0.

Equations

Homomorphism from ℕ∞ to sending to 0.

Equations
theorem ENat.toNatHom_apply (n : ) :
toNatHom n = (↑n).toNat
@[simp]
theorem ENat.toNat_coe (n : ) :
(↑n).toNat = n
@[simp]
theorem ENat.toNat_zero :
toNat 0 = 0
@[simp]
theorem ENat.toNat_one :
toNat 1 = 1
@[simp]
@[simp]
@[simp]
theorem ENat.toNat_eq_zero {n : ℕ∞} :
n.toNat = 0 n = 0 n =
@[simp]
theorem ENat.recTopCoe_zero {C : ℕ∞Sort u_1} (d : C ) (f : (a : ) → C a) :
recTopCoe d f 0 = f 0
@[simp]
theorem ENat.recTopCoe_one {C : ℕ∞Sort u_1} (d : C ) (f : (a : ) → C a) :
recTopCoe d f 1 = f 1
@[simp]
theorem ENat.recTopCoe_ofNat {C : ℕ∞Sort u_1} (d : C ) (f : (a : ) → C a) (x : ) [x.AtLeastTwo] :
@[simp]
theorem ENat.top_ne_coe (a : ) :
a
@[simp]
@[simp]
@[simp]
theorem ENat.coe_ne_top (a : ) :
a
@[simp]
@[simp]
@[simp]
theorem ENat.top_sub_coe (a : ) :
- a =
@[simp]
@[simp]
theorem ENat.top_pos :
0 <
@[deprecated ENat.top_pos (since := "2024-10-22")]

Alias of ENat.top_pos.

theorem ENat.sub_top (a : ℕ∞) :
a - = 0
@[simp]
theorem ENat.coe_toNat_eq_self {n : ℕ∞} :
n.toNat = n n
theorem ENat.coe_toNat {n : ℕ∞} :
n n.toNat = n

Alias of the reverse direction of ENat.coe_toNat_eq_self.

@[simp]
theorem ENat.toNat_eq_iff_eq_coe (n : ℕ∞) (m : ) [NeZero m] :
n.toNat = m n = m
theorem ENat.toNat_add {m n : ℕ∞} (hm : m ) (hn : n ) :
(m + n).toNat = m.toNat + n.toNat
theorem ENat.toNat_sub {n : ℕ∞} (hn : n ) (m : ℕ∞) :
(m - n).toNat = m.toNat - n.toNat
theorem ENat.toNat_mul (a b : ℕ∞) :
(a * b).toNat = a.toNat * b.toNat
theorem ENat.toNat_eq_iff {m : ℕ∞} {n : } (hn : n 0) :
m.toNat = n m = n
theorem ENat.toNat_le_of_le_coe {m : ℕ∞} {n : } (h : m n) :
theorem ENat.toNat_le_toNat {m n : ℕ∞} (h : m n) (hn : n ) :
@[simp]
theorem ENat.succ_def (m : ℕ∞) :
Order.succ m = m + 1
theorem ENat.add_one_le_iff {m n : ℕ∞} (hm : m ) :
m + 1 n m < n
theorem ENat.lt_one_iff_eq_zero {n : ℕ∞} :
n < 1 n = 0
theorem ENat.lt_add_one_iff {m n : ℕ∞} (hm : n ) :
m < n + 1 m n
theorem ENat.le_coe_iff {n : ℕ∞} {k : } :
n k ∃ (n₀ : ), n = n₀ n₀ k
@[simp]
theorem ENat.not_lt_zero (n : ℕ∞) :
¬n < 0
@[simp]
theorem ENat.coe_lt_top (n : ) :
n <
theorem ENat.coe_lt_coe {n m : } :
n < m n < m
theorem ENat.coe_le_coe {n m : } :
n m n m
theorem ENat.nat_induction {P : ℕ∞Prop} (a : ℕ∞) (h0 : P 0) (hsuc : ∀ (n : ), P nP n.succ) (htop : (∀ (n : ), P n)P ) :
P a
theorem ENat.add_one_pos {n : ℕ∞} :
0 < n + 1
theorem ENat.add_lt_add_iff_right {m n k : ℕ∞} (h : k ) :
n + k < m + k n < m
theorem ENat.add_lt_add_iff_left {m n k : ℕ∞} (h : k ) :
k + n < k + m n < m
theorem ENat.ne_top_iff_exists {n : ℕ∞} :
n ∃ (m : ), m = n
theorem ENat.eq_top_iff_forall_ne {n : ℕ∞} :
n = ∀ (m : ), m n
theorem ENat.eq_top_iff_forall_gt {n : ℕ∞} :
n = ∀ (m : ), m < n
theorem ENat.eq_top_iff_forall_ge {n : ℕ∞} :
n = ∀ (m : ), m n
theorem ENat.forall_natCast_le_iff_le {m n : ℕ∞} :
(∀ (a : ), a ma n) m n
theorem ENat.exists_nat_gt {n : ℕ∞} (hn : n ) :
∃ (m : ), n < m
@[simp]
theorem ENat.sub_eq_top_iff {a b : ℕ∞} :
a - b = a = b
theorem ENat.le_sub_of_add_le_left {a b c : ℕ∞} (ha : a ) :
a + b cb c - a
theorem ENat.sub_sub_cancel {a b : ℕ∞} (h : a ) (h2 : b a) :
a - (a - b) = b
theorem ENat.mul_left_strictMono {a : ℕ∞} (ha : a 0) (h_top : a ) :
StrictMono fun (x : ℕ∞) => a * x
theorem ENat.mul_right_strictMono {a : ℕ∞} (ha : a 0) (h_top : a ) :
StrictMono fun (x : ℕ∞) => x * a
@[simp]
theorem ENat.mul_le_mul_left_iff {a x y : ℕ∞} (ha : a 0) (h_top : a ) :
a * x a * y x y
@[simp]
theorem ENat.mul_le_mul_right_iff {a x y : ℕ∞} (ha : a 0) (h_top : a ) :
x * a y * a x y
theorem ENat.mul_le_mul_of_le_right {a x y : ℕ∞} (hxy : x y) (ha : a 0) (h_top : a ) :
x * a y * a
theorem ENat.self_le_mul_right {c : ℕ∞} (a : ℕ∞) (hc : c 0) :
a a * c
theorem ENat.self_le_mul_left {c : ℕ∞} (a : ℕ∞) (hc : c 0) :
a c * a
theorem ENat.add_one_natCast_le_withTop_of_lt {m : } {n : WithTop ℕ∞} (h : m < n) :
↑(m + 1) n
@[simp]
theorem ENat.coe_top_add_one :
+ 1 =
@[simp]
theorem ENat.add_one_eq_coe_top_iff {n : WithTop ℕ∞} :
n + 1 = n =
@[simp]
theorem ENat.natCast_ne_coe_top (n : ) :
n
@[deprecated ENat.natCast_ne_coe_top (since := "2024-10-22")]
theorem ENat.nat_ne_coe_top (n : ) :
n

Alias of ENat.natCast_ne_coe_top.

theorem ENat.natCast_le_of_coe_top_le_withTop {N : WithTop ℕ∞} (hN : N) (n : ) :
n N
theorem ENat.natCast_lt_of_coe_top_le_withTop {N : WithTop ℕ∞} (hN : N) (n : ) :
n < N
def ENat.map {α : Type u_1} (f : α) (k : ℕ∞) :

Specialization of WithTop.map to ENat.

Equations
@[simp]
theorem ENat.map_top {α : Type u_1} (f : α) :
@[simp]
theorem ENat.map_coe {α : Type u_1} (f : α) (a : ) :
map f a = (f a)
@[simp]
theorem ENat.map_zero {α : Type u_1} (f : α) :
map f 0 = (f 0)
@[simp]
theorem ENat.map_one {α : Type u_1} (f : α) :
map f 1 = (f 1)
@[simp]
theorem ENat.map_ofNat {α : Type u_1} (f : α) (n : ) [n.AtLeastTwo] :
map f (OfNat.ofNat n) = (f n)
@[simp]
theorem ENat.map_eq_top_iff {n : ℕ∞} {α : Type u_1} {f : α} :
map f n = n =
@[simp]
theorem ENat.strictMono_map_iff {α : Type u_1} {f : α} [Preorder α] :
@[simp]
theorem ENat.monotone_map_iff {α : Type u_1} {f : α} [Preorder α] :
@[simp]
@[simp]
@[simp]
theorem ENat.map_add {β : Type u_2} {F : Type u_3} [Add β] [FunLike F β] [AddHomClass F β] (f : F) (a b : ℕ∞) :
map (⇑f) (a + b) = map (⇑f) a + map (⇑f) b
def OneHom.ENatMap {N : Type u_2} [One N] (f : OneHom N) :

A version of ENat.map for OneHoms.

Equations
def ZeroHom.ENatMap {N : Type u_2} [Zero N] (f : ZeroHom N) :

A version of ENat.map for ZeroHoms.

Equations
def AddHom.ENatMap {N : Type u_2} [Add N] (f : →ₙ+ N) :

A version of WithTop.map for AddHoms.

Equations
@[simp]
theorem AddHom.ENatMap_apply {N : Type u_2} [Add N] (f : →ₙ+ N) :
f.ENatMap = ENat.map f

A version of WithTop.map for AddMonoidHoms.

Equations
@[simp]
theorem AddMonoidHom.ENatMap_apply {N : Type u_2} [AddZeroClass N] (f : →+ N) :
f.ENatMap = ENat.map f

A version of ENat.map for MonoidWithZeroHoms.

Equations
  • f.ENatMap hf = { toFun := ENat.map f, map_zero' := , map_one' := , map_mul' := }
@[simp]

A version of ENat.map for RingHoms.

Equations
theorem WithBot.lt_add_one_iff {n : WithBot ℕ∞} {m : } :
n < m + 1 n m
theorem WithBot.add_one_le_iff {n : } {m : WithBot ℕ∞} :
n + 1 m n < m