Documentation

Init.WF

inductive Acc {α : Sort u} (r : ααProp) :
αProp

Acc is the accessibility predicate. Given some relation r (e.g. <) and a value x, Acc r x means that x is accessible through r:

x is accessible if there exists no infinite sequence ... < y₂ < y₁ < y₀ < x.

  • intro {α : Sort u} {r : ααProp} (x : α) (h : ∀ (y : α), r y xAcc r y) : Acc r x

    A value is accessible if for all y such that r y x, y is also accessible. Note that if there exists no y such that r y x, then x is accessible. Such an x is called a base case.

@[reducible, inline]
noncomputable abbrev Acc.ndrec {α : Sort u2} {r : ααProp} {C : αSort u1} (m : (x : α) → (∀ (y : α), r y xAcc r y)((y : α) → r y xC y)C x) {a : α} (n : Acc r a) :
C a
Equations
@[reducible, inline]
noncomputable abbrev Acc.ndrecOn {α : Sort u2} {r : ααProp} {C : αSort u1} {a : α} (n : Acc r a) (m : (x : α) → (∀ (y : α), r y xAcc r y)((y : α) → r y xC y)C x) :
C a
Equations
theorem Acc.inv {α : Sort u} {r : ααProp} {x y : α} (h₁ : Acc r x) (h₂ : r y x) :
Acc r y
inductive WellFounded {α : Sort u} (r : ααProp) :

A relation r is WellFounded if all elements of α are accessible within r. If a relation is WellFounded, it does not allow for an infinite descent along the relation.

If the arguments of the recursive calls in a function definition decrease according to a well founded relation, then the function terminates. Well-founded relations are sometimes called Artinian or said to satisfy the “descending chain condition”.

  • intro {α : Sort u} {r : ααProp} (h : ∀ (a : α), Acc r a) : WellFounded r

    If all elements are accessible via r, then r is well-founded.

class WellFoundedRelation (α : Sort u) :
Sort (max 1 u)

A type that has a standard well-founded relation.

Instances are used to prove that functions terminate using well-founded recursion by showing that recursive calls reduce some measure according to a well-founded relation. This relation can combine well-founded relations on the recursive function's parameters.

  • rel : ααProp

    A well-founded relation on α.

  • A proof that rel is, in fact, well-founded.

Instances
theorem WellFounded.apply {α : Sort u} {r : ααProp} (wf : WellFounded r) (a : α) :
Acc r a
noncomputable def WellFounded.recursion {α : Sort u} {r : ααProp} (hwf : WellFounded r) {C : αSort v} (a : α) (h : (x : α) → ((y : α) → r y xC y)C x) :
C a
Equations
  • hwf.recursion a h = Acc.rec (fun (x₁ : α) (h_1 : ∀ (y : α), r y x₁Acc r y) (ih : (y : α) → r y x₁C y) => h x₁ ih)
theorem WellFounded.induction {α : Sort u} {r : ααProp} (hwf : WellFounded r) {C : αProp} (a : α) (h : ∀ (x : α), (∀ (y : α), r y xC y)C x) :
C a
noncomputable def WellFounded.fixF {α : Sort u} {r : ααProp} {C : αSort v} (F : (x : α) → ((y : α) → r y xC y)C x) (x : α) (a : Acc r x) :
C x
Equations
  • WellFounded.fixF F x a = Acc.rec (fun (x₁ : α) (h : ∀ (y : α), r y x₁Acc r y) (ih : (y : α) → r y x₁C y) => F x₁ ih) a
theorem WellFounded.fixFEq {α : Sort u} {r : ααProp} {C : αSort v} (F : (x : α) → ((y : α) → r y xC y)C x) (x : α) (acx : Acc r x) :
fixF F x acx = F x fun (y : α) (p : r y x) => fixF F y
noncomputable def WellFounded.fix {α : Sort u} {C : αSort v} {r : ααProp} (hwf : WellFounded r) (F : (x : α) → ((y : α) → r y xC y)C x) (x : α) :
C x

A well-founded fixpoint. If satisfying the motive C for all values that are smaller according to a well-founded relation allows it to be satisfied for the current value, then it is satisfied for all values.

This function is used as part of the elaboration of well-founded recursion.

Equations
theorem WellFounded.fix_eq {α : Sort u} {C : αSort v} {r : ααProp} (hwf : WellFounded r) (F : (x : α) → ((y : α) → r y xC y)C x) (x : α) :
hwf.fix F x = F x fun (y : α) (x : r y x) => hwf.fix F y
Equations
theorem Subrelation.accessible {α : Sort u} {r q : ααProp} {a : α} (h₁ : Subrelation q r) (ac : Acc r a) :
Acc q a
theorem Subrelation.wf {α : Sort u} {r q : ααProp} (h₁ : Subrelation q r) (h₂ : WellFounded r) :
theorem InvImage.accessible {α : Sort u} {β : Sort v} {r : ββProp} {a : α} (f : αβ) (ac : Acc r (f a)) :
Acc (InvImage r f) a
theorem InvImage.wf {α : Sort u} {β : Sort v} {r : ββProp} (f : αβ) (h : WellFounded r) :
@[reducible]
def invImage {α : Sort u_1} {β : Sort u_2} (f : αβ) (h : WellFoundedRelation β) :

The inverse image of a well-founded relation is well-founded.

Equations
theorem Acc.transGen {α✝ : Sort u_1} {r : α✝α✝Prop} {a : α✝} (h : Acc r a) :
theorem acc_transGen_iff {α✝ : Sort u_1} {r : α✝α✝Prop} {a : α✝} :
theorem WellFounded.transGen {α✝ : Sort u_1} {r : α✝α✝Prop} (h : WellFounded r) :
Equations
noncomputable def Nat.strongRecOn {motive : NatSort u} (n : Nat) (ind : (n : Nat) → ((m : Nat) → m < nmotive m)motive n) :
motive n

Strong induction on the natural numbers.

The induction hypothesis is that all numbers less than a given number satisfy the motive, which should be demonstrated for the given number.

Equations
noncomputable def Nat.caseStrongRecOn {motive : NatSort u} (a : Nat) (zero : motive 0) (ind : (n : Nat) → ((m : Nat) → m nmotive m)motive n.succ) :
motive a

Case analysis based on strong induction for the natural numbers.

Equations
  • One or more equations did not get rendered due to their size.
@[reducible, inline]
abbrev measure {α : Sort u} (f : αNat) :
Equations
@[reducible, inline]
abbrev sizeOfWFRel {α : Sort u} [SizeOf α] :
Equations
inductive Prod.Lex {α : Type u} {β : Type v} (ra : ααProp) (rb : ββProp) :
α × βα × βProp

A lexicographical order based on the orders ra and rb for the elements of pairs.

  • left {α : Type u} {β : Type v} {ra : ααProp} {rb : ββProp} {a₁ : α} (b₁ : β) {a₂ : α} (b₂ : β) (h : ra a₁ a₂) : Prod.Lex ra rb (a₁, b₁) (a₂, b₂)

    If the first projections of two pairs are ordered, then they are lexicographically ordered.

  • right {α : Type u} {β : Type v} {ra : ααProp} {rb : ββProp} (a : α) {b₁ b₂ : β} (h : rb b₁ b₂) : Prod.Lex ra rb (a, b₁) (a, b₂)

    If the first projections of two pairs are equal, then they are lexicographically ordered if the second projections are ordered.

Instances For
theorem Prod.lex_def {α : Type u} {β : Type v} {r : ααProp} {s : ββProp} {p q : α × β} :
Prod.Lex r s p q r p.fst q.fst p.fst = q.fst s p.snd q.snd
instance Prod.Lex.instDecidableRelOfDecidableEq {α : Type u} {β : Type v} [αeqDec : DecidableEq α] {r : ααProp} [rDec : DecidableRel r] {s : ββProp} [sDec : DecidableRel s] :
Equations
  • One or more equations did not get rendered due to their size.
theorem Prod.Lex.right' {β : Type v} (rb : ββProp) {a₂ : Nat} {b₂ : β} {a₁ : Nat} {b₁ : β} (h₁ : a₁ a₂) (h₂ : rb b₁ b₂) :
Prod.Lex Nat.lt rb (a₁, b₁) (a₂, b₂)
inductive Prod.RProd {α : Type u} {β : Type v} (ra : ααProp) (rb : ββProp) :
α × βα × βProp
  • intro {α : Type u} {β : Type v} {ra : ααProp} {rb : ββProp} {a₁ : α} {b₁ : β} {a₂ : α} {b₂ : β} (h₁ : ra a₁ a₂) (h₂ : rb b₁ b₂) : RProd ra rb (a₁, b₁) (a₂, b₂)
theorem Prod.lexAccessible {α : Type u} {β : Type v} {ra : ααProp} {rb : ββProp} {a : α} (aca : Acc ra a) (acb : ∀ (b : β), Acc rb b) (b : β) :
Acc (Prod.Lex ra rb) (a, b)
@[reducible]
def Prod.lex {α : Type u} {β : Type v} (ha : WellFoundedRelation α) (hb : WellFoundedRelation β) :
Equations
theorem Prod.RProdSubLex {α : Type u} {β : Type v} {ra : ααProp} {rb : ββProp} (a b : α × β) (h : RProd ra rb a b) :
Prod.Lex ra rb a b
inductive PSigma.Lex {α : Sort u} {β : αSort v} (r : ααProp) (s : (a : α) → β aβ aProp) :
PSigma βPSigma βProp
  • left {α : Sort u} {β : αSort v} {r : ααProp} {s : (a : α) → β aβ aProp} {a₁ : α} (b₁ : β a₁) {a₂ : α} (b₂ : β a₂) : r a₁ a₂Lex r s a₁, b₁ a₂, b₂
  • right {α : Sort u} {β : αSort v} {r : ααProp} {s : (a : α) → β aβ aProp} (a : α) {b₁ b₂ : β a} : s a b₁ b₂Lex r s a, b₁ a, b₂
theorem PSigma.lexAccessible {α : Sort u} {β : αSort v} {r : ααProp} {s : (a : α) → β aβ aProp} {a : α} (aca : Acc r a) (acb : ∀ (a : α), WellFounded (s a)) (b : β a) :
Acc (Lex r s) a, b
@[reducible]
def PSigma.lex {α : Sort u} {β : αSort v} (ha : WellFoundedRelation α) (hb : (a : α) → WellFoundedRelation (β a)) :
Equations
instance PSigma.instWellFoundedRelation {α : Sort u} {β : αSort v} [ha : WellFoundedRelation α] [hb : (a : α) → WellFoundedRelation (β a)] :
Equations
def PSigma.lexNdep {α : Sort u} {β : Sort v} (r : ααProp) (s : ββProp) :
(_ : α) ×' β(_ : α) ×' βProp
Equations
theorem PSigma.lexNdepWf {α : Sort u} {β : Sort v} {r : ααProp} {s : ββProp} (ha : WellFounded r) (hb : WellFounded s) :
inductive PSigma.RevLex {α : Sort u} {β : Sort v} (r : ααProp) (s : ββProp) :
(_ : α) ×' β(_ : α) ×' βProp
  • left {α : Sort u} {β : Sort v} {r : ααProp} {s : ββProp} {a₁ a₂ : α} (b : β) : r a₁ a₂RevLex r s a₁, b a₂, b
  • right {α : Sort u} {β : Sort v} {r : ααProp} {s : ββProp} (a₁ : α) {b₁ : β} (a₂ : α) {b₂ : β} : s b₁ b₂RevLex r s a₁, b₁ a₂, b₂
theorem PSigma.revLexAccessible {α : Sort u} {β : Sort v} {r : ααProp} {s : ββProp} {b : β} (acb : Acc s b) (aca : ∀ (a : α), Acc r a) (a : α) :
Acc (RevLex r s) a, b
theorem PSigma.revLex {α : Sort u} {β : Sort v} {r : ααProp} {s : ββProp} (ha : WellFounded r) (hb : WellFounded s) :
def PSigma.SkipLeft (α : Type u) {β : Type v} (s : ββProp) :
(_ : α) ×' β(_ : α) ×' βProp
Equations
def PSigma.skipLeft (α : Type u) {β : Type v} (hb : WellFoundedRelation β) :
WellFoundedRelation ((_ : α) ×' β)
Equations
theorem PSigma.mkSkipLeft {α : Type u} {β : Type v} {b₁ b₂ : β} {s : ββProp} (a₁ a₂ : α) (h : s b₁ b₂) :
SkipLeft α s a₁, b₁ a₂, b₂
def wfParam {α : Sort u} (a : α) :
α

The wfParam gadget is used internally during the construction of recursive functions by wellfounded recursion, to keep track of the parameter for which the automatic introduction of List.attach (or similar) is plausible.

Equations
theorem ite_eq_dite {P : Prop} {α✝ : Sort u_1} {a b : α✝} [Decidable P] :
(if P then a else b) = if h : P then binderNameHint h () a else binderNameHint h () b

Reverse direction of dite_eq_ite. Used by the well-founded definition preprocessor to extend the context of a termination proof inside if-then-else with the condition.