Documentation

Mathlib.Order.RelClasses

Unbundled relation classes #

In this file we prove some properties of Is* classes defined in Mathlib.Order.Defs. The main difference between these classes and the usual order classes (Preorder etc) is that usual classes extend LE and/or LT while these classes take a relation as an explicit argument.

theorem IsRefl.swap {α : Type u} (r : ααProp) [IsRefl α r] :
theorem IsIrrefl.swap {α : Type u} (r : ααProp) [IsIrrefl α r] :
theorem IsTrans.swap {α : Type u} (r : ααProp) [IsTrans α r] :
theorem IsAntisymm.swap {α : Type u} (r : ααProp) [IsAntisymm α r] :
theorem IsAsymm.swap {α : Type u} (r : ααProp) [IsAsymm α r] :
theorem IsTotal.swap {α : Type u} (r : ααProp) [IsTotal α r] :
theorem IsTrichotomous.swap {α : Type u} (r : ααProp) [IsTrichotomous α r] :
theorem IsPreorder.swap {α : Type u} (r : ααProp) [IsPreorder α r] :
theorem IsStrictOrder.swap {α : Type u} (r : ααProp) [IsStrictOrder α r] :
theorem IsPartialOrder.swap {α : Type u} (r : ααProp) [IsPartialOrder α r] :
theorem eq_empty_relation {α : Type u} (r : ααProp) [IsIrrefl α r] [Subsingleton α] :
@[reducible, inline]
abbrev partialOrderOfSO {α : Type u} (r : ααProp) [IsStrictOrder α r] :

Construct a partial order from an isStrictOrder relation.

See note [reducible non-instances].

Equations
  • partialOrderOfSO r = { le := fun (x y : α) => x = y r x y, lt := r, le_refl := , le_trans := , lt_iff_le_not_le := , le_antisymm := }
@[reducible, inline]
abbrev linearOrderOfSTO {α : Type u} (r : ααProp) [IsStrictTotalOrder α r] [DecidableRel r] :

Construct a linear order from an IsStrictTotalOrder relation.

See note [reducible non-instances].

Equations
  • One or more equations did not get rendered due to their size.

Order connection #

class IsOrderConnected (α : Type u) (lt : ααProp) :

A connected order is one satisfying the condition a < c → a < b ∨ b < c. This is recognizable as an intuitionistic substitute for a ≤ b ∨ b ≤ a on the constructive reals, and is also known as negative transitivity, since the contrapositive asserts transitivity of the relation ¬ a < b.

  • conn (a b c : α) : lt a clt a b lt b c

    A connected order is one satisfying the condition a < c → a < b ∨ b < c.

Instances
    theorem IsOrderConnected.neg_trans {α : Type u} {r : ααProp} [IsOrderConnected α r] {a b c : α} (h₁ : ¬r a b) (h₂ : ¬r b c) :
    ¬r a c
    theorem isStrictWeakOrder_of_isOrderConnected {α : Type u} {r : ααProp} [IsAsymm α r] [IsOrderConnected α r] :
    @[instance 100]

    Inverse Image #

    theorem InvImage.isTrichotomous {α : Type u} {β : Type v} {r : ααProp} [IsTrichotomous α r] {f : βα} (h : Function.Injective f) :
    instance InvImage.isAsymm {α : Type u} {β : Type v} {r : ααProp} [IsAsymm α r] (f : βα) :
    IsAsymm β (InvImage r f)

    Well-order #

    class IsWellFounded (α : Type u) (r : ααProp) :

    A well-founded relation. Not to be confused with IsWellOrder.

    Instances
    theorem isWellFounded_iff (α : Type u) (r : ααProp) :
    @[irreducible]
    theorem WellFoundedRelation.asymmetric {α : Sort u_1} [WellFoundedRelation α] {a b : α} :
    rel a b¬rel b a
    @[irreducible]
    theorem WellFoundedRelation.asymmetric₃ {α : Sort u_1} [WellFoundedRelation α] {a b c : α} :
    rel a brel b c¬rel c a
    theorem WellFounded.prod_lex {α : Type u} {β : Type v} {ra : ααProp} {rb : ββProp} (ha : WellFounded ra) (hb : WellFounded rb) :
    theorem WellFounded.psigma_lex {α : Sort u_1} {β : αSort u_2} {r : ααProp} {s : (a : α) → β aβ aProp} (ha : WellFounded r) (hb : ∀ (x : α), WellFounded (s x)) :

    The lexicographical order of well-founded relations is well-founded.

    theorem WellFounded.psigma_revLex {α : Sort u_1} {β : Sort u_2} {r : ααProp} {s : ββProp} (ha : WellFounded r) (hb : WellFounded s) :
    theorem WellFounded.psigma_skipLeft (α : Type u) {β : Type v} {s : ββProp} (hb : WellFounded s) :
    theorem IsWellFounded.induction {α : Type u} (r : ααProp) [IsWellFounded α r] {C : αProp} (a : α) (ind : ∀ (x : α), (∀ (y : α), r y xC y)C x) :
    C a

    Induction on a well-founded relation.

    theorem IsWellFounded.apply {α : Type u} (r : ααProp) [IsWellFounded α r] (a : α) :
    Acc r a

    All values are accessible under the well-founded relation.

    def IsWellFounded.fix {α : Type u} (r : ααProp) [IsWellFounded α r] {C : αSort u_1} :
    ((x : α) → ((y : α) → r y xC y)C x)(x : α) → C x

    Creates data, given a way to generate a value from all that compare as less under a well-founded relation. See also IsWellFounded.fix_eq.

    Equations
    theorem IsWellFounded.fix_eq {α : Type u} (r : ααProp) [IsWellFounded α r] {C : αSort u_1} (F : (x : α) → ((y : α) → r y xC y)C x) (x : α) :
    fix r F x = F x fun (y : α) (x : r y x) => fix r F y

    The value from IsWellFounded.fix is built from the previous ones as specified.

    Derive a WellFoundedRelation instance from an isWellFounded instance.

    Equations
    theorem WellFounded.asymmetric {α : Sort u_1} {r : ααProp} (h : WellFounded r) (a b : α) :
    r a b¬r b a
    theorem WellFounded.asymmetric₃ {α : Sort u_1} {r : ααProp} (h : WellFounded r) (a b c : α) :
    r a br b c¬r c a
    @[instance 100]
    instance instIsAsymmOfIsWellFounded {α : Type u} (r : ααProp) [IsWellFounded α r] :
    IsAsymm α r
    @[instance 100]
    instance instIsIrreflOfIsWellFounded {α : Type u} (r : ααProp) [IsWellFounded α r] :
    instance instIsWellFoundedTransGen {α : Type u} (r : ααProp) [i : IsWellFounded α r] :
    @[reducible, inline]
    abbrev WellFoundedLT (α : Type u_1) [LT α] :

    A class for a well founded relation <.

    Equations
    @[reducible, inline]
    abbrev WellFoundedGT (α : Type u_1) [LT α] :

    A class for a well founded relation >.

    Equations
    theorem wellFounded_lt {α : Type u} [LT α] [WellFoundedLT α] :
    WellFounded fun (x1 x2 : α) => x1 < x2
    theorem wellFounded_gt {α : Type u} [LT α] [WellFoundedGT α] :
    WellFounded fun (x1 x2 : α) => x1 > x2
    @[instance 100]
    @[instance 100]
    class IsWellOrder (α : Type u) (r : ααProp) extends IsTrichotomous α r, IsTrans α r, IsWellFounded α r :

    A well order is a well-founded linear order.

    Instances
      @[instance 100]
      instance instIsStrictTotalOrderOfIsWellOrder {α : Type u_1} (r : ααProp) [IsWellOrder α r] :
      @[instance 100]
      instance instIsTrichotomousOfIsWellOrder {α : Type u_1} (r : ααProp) [IsWellOrder α r] :
      @[instance 100]
      instance instIsTransOfIsWellOrder {α : Type u_1} (r : ααProp) [IsWellOrder α r] :
      IsTrans α r
      @[instance 100]
      instance instIsIrreflOfIsWellOrder {α : Type u_1} (r : ααProp) [IsWellOrder α r] :
      @[instance 100]
      instance instIsAsymmOfIsWellOrder {α : Type u_1} (r : ααProp) [IsWellOrder α r] :
      IsAsymm α r
      theorem WellFoundedLT.induction {α : Type u} [LT α] [WellFoundedLT α] {C : αProp} (a : α) (ind : ∀ (x : α), (∀ (y : α), y < xC y)C x) :
      C a

      Inducts on a well-founded < relation.

      theorem WellFoundedLT.apply {α : Type u} [LT α] [WellFoundedLT α] (a : α) :
      Acc (fun (x1 x2 : α) => x1 < x2) a

      All values are accessible under the well-founded <.

      def WellFoundedLT.fix {α : Type u} [LT α] [WellFoundedLT α] {C : αSort u_1} :
      ((x : α) → ((y : α) → y < xC y)C x)(x : α) → C x

      Creates data, given a way to generate a value from all that compare as lesser. See also WellFoundedLT.fix_eq.

      Equations
      theorem WellFoundedLT.fix_eq {α : Type u} [LT α] [WellFoundedLT α] {C : αSort u_1} (F : (x : α) → ((y : α) → y < xC y)C x) (x : α) :
      fix F x = F x fun (y : α) (x : y < x) => fix F y

      The value from WellFoundedLT.fix is built from the previous ones as specified.

      theorem WellFoundedGT.induction {α : Type u} [LT α] [WellFoundedGT α] {C : αProp} (a : α) (ind : ∀ (x : α), (∀ (y : α), x < yC y)C x) :
      C a

      Inducts on a well-founded > relation.

      theorem WellFoundedGT.apply {α : Type u} [LT α] [WellFoundedGT α] (a : α) :
      Acc (fun (x1 x2 : α) => x1 > x2) a

      All values are accessible under the well-founded >.

      def WellFoundedGT.fix {α : Type u} [LT α] [WellFoundedGT α] {C : αSort u_1} :
      ((x : α) → ((y : α) → x < yC y)C x)(x : α) → C x

      Creates data, given a way to generate a value from all that compare as greater. See also WellFoundedGT.fix_eq.

      Equations
      theorem WellFoundedGT.fix_eq {α : Type u} [LT α] [WellFoundedGT α] {C : αSort u_1} (F : (x : α) → ((y : α) → x < yC y)C x) (x : α) :
      fix F x = F x fun (y : α) (x : x < y) => fix F y

      The value from WellFoundedGT.fix is built from the successive ones as specified.

      noncomputable def IsWellOrder.linearOrder {α : Type u} (r : ααProp) [IsWellOrder α r] :

      Construct a decidable linear order from a well-founded linear order.

      Equations
      def IsWellOrder.toHasWellFounded {α : Type u} [LT α] [hwo : IsWellOrder α fun (x1 x2 : α) => x1 < x2] :

      Derive a WellFoundedRelation instance from an IsWellOrder instance.

      Equations
      theorem Subsingleton.isWellOrder {α : Type u} [Subsingleton α] (r : ααProp) [hr : IsIrrefl α r] :
      @[instance 100]
      instance instIsWellOrderOfIsEmpty {α : Type u} [IsEmpty α] (r : ααProp) :
      instance Prod.Lex.instIsWellFounded {α : Type u} {β : Type v} {r : ααProp} {s : ββProp} [IsWellFounded α r] [IsWellFounded β s] :
      IsWellFounded (α × β) (Prod.Lex r s)
      instance instIsWellOrderProdLex {α : Type u} {β : Type v} {r : ααProp} {s : ββProp} [IsWellOrder α r] [IsWellOrder β s] :
      IsWellOrder (α × β) (Prod.Lex r s)
      instance instIsWellFoundedInvImage {α : Type u} {β : Type v} (r : ααProp) [IsWellFounded α r] (f : βα) :
      instance instIsWellFoundedInvImageNatLt {α : Type u} (f : α) :
      IsWellFounded α (InvImage (fun (x1 x2 : ) => x1 < x2) f)
      theorem Subrelation.isWellFounded {α : Type u} (r : ααProp) [IsWellFounded α r] {s : ααProp} (h : Subrelation s r) :
      theorem Prod.wellFoundedLT' {α : Type u} {β : Type v} [PartialOrder α] [WellFoundedLT α] [Preorder β] [WellFoundedLT β] :

      See Prod.wellFoundedLT for a version that only requires Preorder α.

      theorem Prod.wellFoundedGT' {α : Type u} {β : Type v} [PartialOrder α] [WellFoundedGT α] [Preorder β] [WellFoundedGT β] :

      See Prod.wellFoundedGT for a version that only requires Preorder α.

      def Set.Unbounded {α : Type u} (r : ααProp) (s : Set α) :

      An unbounded or cofinal set.

      Equations
      def Set.Bounded {α : Type u} (r : ααProp) (s : Set α) :

      A bounded or final set. Not to be confused with Bornology.IsBounded.

      Equations
      @[simp]
      theorem Set.not_bounded_iff {α : Type u} {r : ααProp} (s : Set α) :
      @[simp]
      theorem Set.not_unbounded_iff {α : Type u} {r : ααProp} (s : Set α) :
      theorem Set.unbounded_of_isEmpty {α : Type u} [IsEmpty α] {r : ααProp} (s : Set α) :
      instance Order.Preimage.instIsRefl {α : Type u} {β : Type v} {r : ααProp} [IsRefl α r] {f : βα} :
      IsRefl β (f ⁻¹'o r)
      instance Order.Preimage.instIsIrrefl {α : Type u} {β : Type v} {r : ααProp} [IsIrrefl α r] {f : βα} :
      IsIrrefl β (f ⁻¹'o r)
      instance Order.Preimage.instIsSymm {α : Type u} {β : Type v} {r : ααProp} [IsSymm α r] {f : βα} :
      IsSymm β (f ⁻¹'o r)
      instance Order.Preimage.instIsAsymm {α : Type u} {β : Type v} {r : ααProp} [IsAsymm α r] {f : βα} :
      IsAsymm β (f ⁻¹'o r)
      instance Order.Preimage.instIsTrans {α : Type u} {β : Type v} {r : ααProp} [IsTrans α r] {f : βα} :
      IsTrans β (f ⁻¹'o r)
      instance Order.Preimage.instIsPreorder {α : Type u} {β : Type v} {r : ααProp} [IsPreorder α r] {f : βα} :
      instance Order.Preimage.instIsStrictOrder {α : Type u} {β : Type v} {r : ααProp} [IsStrictOrder α r] {f : βα} :
      instance Order.Preimage.instIsStrictWeakOrder {α : Type u} {β : Type v} {r : ααProp} [IsStrictWeakOrder α r] {f : βα} :
      instance Order.Preimage.instIsEquiv {α : Type u} {β : Type v} {r : ααProp} [IsEquiv α r] {f : βα} :
      IsEquiv β (f ⁻¹'o r)
      instance Order.Preimage.instIsTotal {α : Type u} {β : Type v} {r : ααProp} [IsTotal α r] {f : βα} :
      IsTotal β (f ⁻¹'o r)
      theorem Order.Preimage.isAntisymm {α : Type u} {β : Type v} {r : ααProp} [IsAntisymm α r] {f : βα} (hf : Function.Injective f) :

      Strict-non strict relations #

      class IsNonstrictStrictOrder (α : Type u_1) (r : semiOutParam (ααProp)) (s : ααProp) :

      An unbundled relation class stating that r is the nonstrict relation corresponding to the strict relation s. Compare Preorder.lt_iff_le_not_le. This is mostly meant to provide dot notation on (⊆) and (⊂).

      • right_iff_left_not_left (a b : α) : s a b r a b ¬r b a

        The relation r is the nonstrict relation corresponding to the strict relation s.

      Instances
        theorem right_iff_left_not_left {α : Type u} {r s : ααProp} [IsNonstrictStrictOrder α r s] {a b : α} :
        s a b r a b ¬r b a
        theorem right_iff_left_not_left_of {α : Type u} (r s : ααProp) [IsNonstrictStrictOrder α r s] {a b : α} :
        s a b r a b ¬r b a

        A version of right_iff_left_not_left with explicit r and s.

        instance instIsIrreflOfIsNonstrictStrictOrder {α : Type u} {r s : ααProp} [IsNonstrictStrictOrder α r s] :

        and #

        theorem subset_of_eq_of_subset {α : Type u} [HasSubset α] {a b c : α} (hab : a = b) (hbc : b c) :
        a c
        theorem subset_of_subset_of_eq {α : Type u} [HasSubset α] {a b c : α} (hab : a b) (hbc : b = c) :
        a c
        @[simp]
        theorem subset_refl {α : Type u} [HasSubset α] [IsRefl α fun (x1 x2 : α) => x1 x2] (a : α) :
        a a
        theorem subset_rfl {α : Type u} [HasSubset α] {a : α} [IsRefl α fun (x1 x2 : α) => x1 x2] :
        a a
        theorem subset_of_eq {α : Type u} [HasSubset α] {a b : α} [IsRefl α fun (x1 x2 : α) => x1 x2] :
        a = ba b
        theorem superset_of_eq {α : Type u} [HasSubset α] {a b : α} [IsRefl α fun (x1 x2 : α) => x1 x2] :
        a = bb a
        theorem ne_of_not_subset {α : Type u} [HasSubset α] {a b : α} [IsRefl α fun (x1 x2 : α) => x1 x2] :
        ¬a ba b
        theorem ne_of_not_superset {α : Type u} [HasSubset α] {a b : α} [IsRefl α fun (x1 x2 : α) => x1 x2] :
        ¬a bb a
        theorem subset_trans {α : Type u} [HasSubset α] [IsTrans α fun (x1 x2 : α) => x1 x2] {a b c : α} :
        a bb ca c
        theorem subset_antisymm {α : Type u} [HasSubset α] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] :
        a bb aa = b
        theorem superset_antisymm {α : Type u} [HasSubset α] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] :
        a bb ab = a
        theorem Eq.trans_subset {α : Type u} [HasSubset α] {a b c : α} (hab : a = b) (hbc : b c) :
        a c

        Alias of subset_of_eq_of_subset.

        theorem HasSubset.subset.trans_eq {α : Type u} [HasSubset α] {a b c : α} (hab : a b) (hbc : b = c) :
        a c

        Alias of subset_of_subset_of_eq.

        theorem Eq.subset' {α : Type u} [HasSubset α] {a b : α} [IsRefl α fun (x1 x2 : α) => x1 x2] :
        a = ba b

        Alias of subset_of_eq.

        theorem Eq.superset {α : Type u} [HasSubset α] {a b : α} [IsRefl α fun (x1 x2 : α) => x1 x2] :
        a = bb a

        Alias of superset_of_eq.

        theorem HasSubset.Subset.trans {α : Type u} [HasSubset α] [IsTrans α fun (x1 x2 : α) => x1 x2] {a b c : α} :
        a bb ca c

        Alias of subset_trans.

        theorem HasSubset.Subset.antisymm {α : Type u} [HasSubset α] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] :
        a bb aa = b

        Alias of subset_antisymm.

        theorem HasSubset.Subset.antisymm' {α : Type u} [HasSubset α] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] :
        a bb ab = a

        Alias of superset_antisymm.

        theorem subset_antisymm_iff {α : Type u} [HasSubset α] {a b : α} [IsRefl α fun (x1 x2 : α) => x1 x2] [IsAntisymm α fun (x1 x2 : α) => x1 x2] :
        a = b a b b a
        theorem superset_antisymm_iff {α : Type u} [HasSubset α] {a b : α} [IsRefl α fun (x1 x2 : α) => x1 x2] [IsAntisymm α fun (x1 x2 : α) => x1 x2] :
        a = b b a a b
        theorem ssubset_of_eq_of_ssubset {α : Type u} [HasSSubset α] {a b c : α} (hab : a = b) (hbc : b c) :
        a c
        theorem ssubset_of_ssubset_of_eq {α : Type u} [HasSSubset α] {a b c : α} (hab : a b) (hbc : b = c) :
        a c
        theorem ssubset_irrefl {α : Type u} [HasSSubset α] [IsIrrefl α fun (x1 x2 : α) => x1 x2] (a : α) :
        ¬a a
        theorem ssubset_irrfl {α : Type u} [HasSSubset α] [IsIrrefl α fun (x1 x2 : α) => x1 x2] {a : α} :
        ¬a a
        theorem ne_of_ssubset {α : Type u} [HasSSubset α] [IsIrrefl α fun (x1 x2 : α) => x1 x2] {a b : α} :
        a ba b
        theorem ne_of_ssuperset {α : Type u} [HasSSubset α] [IsIrrefl α fun (x1 x2 : α) => x1 x2] {a b : α} :
        a bb a
        theorem ssubset_trans {α : Type u} [HasSSubset α] [IsTrans α fun (x1 x2 : α) => x1 x2] {a b c : α} :
        a bb ca c
        theorem ssubset_asymm {α : Type u} [HasSSubset α] [IsAsymm α fun (x1 x2 : α) => x1 x2] {a b : α} :
        a b¬b a
        theorem Eq.trans_ssubset {α : Type u} [HasSSubset α] {a b c : α} (hab : a = b) (hbc : b c) :
        a c

        Alias of ssubset_of_eq_of_ssubset.

        theorem HasSSubset.SSubset.trans_eq {α : Type u} [HasSSubset α] {a b c : α} (hab : a b) (hbc : b = c) :
        a c

        Alias of ssubset_of_ssubset_of_eq.

        theorem HasSSubset.SSubset.false {α : Type u} [HasSSubset α] [IsIrrefl α fun (x1 x2 : α) => x1 x2] {a : α} :
        ¬a a

        Alias of ssubset_irrfl.

        theorem HasSSubset.SSubset.ne {α : Type u} [HasSSubset α] [IsIrrefl α fun (x1 x2 : α) => x1 x2] {a b : α} :
        a ba b

        Alias of ne_of_ssubset.

        theorem HasSSubset.SSubset.ne' {α : Type u} [HasSSubset α] [IsIrrefl α fun (x1 x2 : α) => x1 x2] {a b : α} :
        a bb a

        Alias of ne_of_ssuperset.

        theorem HasSSubset.SSubset.trans {α : Type u} [HasSSubset α] [IsTrans α fun (x1 x2 : α) => x1 x2] {a b c : α} :
        a bb ca c

        Alias of ssubset_trans.

        theorem HasSSubset.SSubset.asymm {α : Type u} [HasSSubset α] [IsAsymm α fun (x1 x2 : α) => x1 x2] {a b : α} :
        a b¬b a

        Alias of ssubset_asymm.

        theorem ssubset_iff_subset_not_subset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} :
        a b a b ¬b a
        theorem subset_of_ssubset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} (h : a b) :
        a b
        theorem not_subset_of_ssubset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} (h : a b) :
        ¬b a
        theorem not_ssubset_of_subset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} (h : a b) :
        ¬b a
        theorem ssubset_of_subset_not_subset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} (h₁ : a b) (h₂ : ¬b a) :
        a b
        theorem HasSSubset.SSubset.subset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} (h : a b) :
        a b

        Alias of subset_of_ssubset.

        theorem HasSSubset.SSubset.not_subset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} (h : a b) :
        ¬b a

        Alias of not_subset_of_ssubset.

        theorem HasSubset.Subset.not_ssubset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} (h : a b) :
        ¬b a

        Alias of not_ssubset_of_subset.

        theorem HasSubset.Subset.ssubset_of_not_subset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} (h₁ : a b) (h₂ : ¬b a) :
        a b

        Alias of ssubset_of_subset_not_subset.

        theorem ssubset_of_subset_of_ssubset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b c : α} [IsTrans α fun (x1 x2 : α) => x1 x2] (h₁ : a b) (h₂ : b c) :
        a c
        theorem ssubset_of_ssubset_of_subset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b c : α} [IsTrans α fun (x1 x2 : α) => x1 x2] (h₁ : a b) (h₂ : b c) :
        a c
        theorem ssubset_of_subset_of_ne {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] (h₁ : a b) (h₂ : a b) :
        a b
        theorem ssubset_of_ne_of_subset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] (h₁ : a b) (h₂ : a b) :
        a b
        theorem eq_or_ssubset_of_subset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] (h : a b) :
        a = b a b
        theorem ssubset_or_eq_of_subset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] (h : a b) :
        a b a = b
        theorem eq_of_subset_of_not_ssubset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] (hab : a b) (hba : ¬a b) :
        a = b
        theorem eq_of_superset_of_not_ssuperset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] (hab : a b) (hba : ¬a b) :
        b = a
        theorem HasSubset.Subset.trans_ssubset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b c : α} [IsTrans α fun (x1 x2 : α) => x1 x2] (h₁ : a b) (h₂ : b c) :
        a c

        Alias of ssubset_of_subset_of_ssubset.

        theorem HasSSubset.SSubset.trans_subset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b c : α} [IsTrans α fun (x1 x2 : α) => x1 x2] (h₁ : a b) (h₂ : b c) :
        a c

        Alias of ssubset_of_ssubset_of_subset.

        theorem HasSubset.Subset.ssubset_of_ne {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] (h₁ : a b) (h₂ : a b) :
        a b

        Alias of ssubset_of_subset_of_ne.

        theorem Ne.ssubset_of_subset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] (h₁ : a b) (h₂ : a b) :
        a b

        Alias of ssubset_of_ne_of_subset.

        theorem HasSubset.Subset.eq_or_ssubset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] (h : a b) :
        a = b a b

        Alias of eq_or_ssubset_of_subset.

        theorem HasSubset.Subset.ssubset_or_eq {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] (h : a b) :
        a b a = b

        Alias of ssubset_or_eq_of_subset.

        theorem HasSubset.Subset.eq_of_not_ssubset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] (hab : a b) (hba : ¬a b) :
        a = b

        Alias of eq_of_subset_of_not_ssubset.

        theorem HasSubset.Subset.eq_of_not_ssuperset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] (hab : a b) (hba : ¬a b) :
        b = a

        Alias of eq_of_superset_of_not_ssuperset.

        theorem ssubset_iff_subset_ne {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] :
        a b a b a b
        theorem subset_iff_ssubset_or_eq {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsRefl α fun (x1 x2 : α) => x1 x2] [IsAntisymm α fun (x1 x2 : α) => x1 x2] :
        a b a b a = b

        Conversion of bundled order typeclasses to unbundled relation typeclasses #

        instance instIsReflLe {α : Type u} [Preorder α] :
        IsRefl α fun (x1 x2 : α) => x1 x2
        instance instIsReflGe {α : Type u} [Preorder α] :
        IsRefl α fun (x1 x2 : α) => x1 x2
        instance instIsTransLe {α : Type u} [Preorder α] :
        IsTrans α fun (x1 x2 : α) => x1 x2
        instance instIsTransGe {α : Type u} [Preorder α] :
        IsTrans α fun (x1 x2 : α) => x1 x2
        instance instIsPreorderLe {α : Type u} [Preorder α] :
        IsPreorder α fun (x1 x2 : α) => x1 x2
        instance instIsPreorderGe {α : Type u} [Preorder α] :
        IsPreorder α fun (x1 x2 : α) => x1 x2
        instance instIsIrreflLt {α : Type u} [Preorder α] :
        IsIrrefl α fun (x1 x2 : α) => x1 < x2
        instance instIsIrreflGt {α : Type u} [Preorder α] :
        IsIrrefl α fun (x1 x2 : α) => x1 > x2
        instance instIsTransLt {α : Type u} [Preorder α] :
        IsTrans α fun (x1 x2 : α) => x1 < x2
        instance instIsTransGt {α : Type u} [Preorder α] :
        IsTrans α fun (x1 x2 : α) => x1 > x2
        instance instIsAsymmLt {α : Type u} [Preorder α] :
        IsAsymm α fun (x1 x2 : α) => x1 < x2
        instance instIsAsymmGt {α : Type u} [Preorder α] :
        IsAsymm α fun (x1 x2 : α) => x1 > x2
        instance instIsAntisymmLt {α : Type u} [Preorder α] :
        IsAntisymm α fun (x1 x2 : α) => x1 < x2
        instance instIsAntisymmGt {α : Type u} [Preorder α] :
        IsAntisymm α fun (x1 x2 : α) => x1 > x2
        instance instIsStrictOrderLt {α : Type u} [Preorder α] :
        IsStrictOrder α fun (x1 x2 : α) => x1 < x2
        instance instIsStrictOrderGt {α : Type u} [Preorder α] :
        IsStrictOrder α fun (x1 x2 : α) => x1 > x2
        instance instIsNonstrictStrictOrderLeLt {α : Type u} [Preorder α] :
        IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 < x2
        instance instIsAntisymmLe {α : Type u} [PartialOrder α] :
        IsAntisymm α fun (x1 x2 : α) => x1 x2
        instance instIsAntisymmGe {α : Type u} [PartialOrder α] :
        IsAntisymm α fun (x1 x2 : α) => x1 x2
        instance instIsPartialOrderLe {α : Type u} [PartialOrder α] :
        IsPartialOrder α fun (x1 x2 : α) => x1 x2
        instance instIsPartialOrderGe {α : Type u} [PartialOrder α] :
        IsPartialOrder α fun (x1 x2 : α) => x1 x2
        instance LE.isTotal {α : Type u} [LinearOrder α] :
        IsTotal α fun (x1 x2 : α) => x1 x2
        instance instIsTotalGe {α : Type u} [LinearOrder α] :
        IsTotal α fun (x1 x2 : α) => x1 x2
        instance instIsLinearOrderLe {α : Type u} [LinearOrder α] :
        IsLinearOrder α fun (x1 x2 : α) => x1 x2
        instance instIsLinearOrderGe {α : Type u} [LinearOrder α] :
        IsLinearOrder α fun (x1 x2 : α) => x1 x2
        instance instIsTrichotomousLt {α : Type u} [LinearOrder α] :
        IsTrichotomous α fun (x1 x2 : α) => x1 < x2
        instance instIsTrichotomousGt {α : Type u} [LinearOrder α] :
        IsTrichotomous α fun (x1 x2 : α) => x1 > x2
        instance instIsTrichotomousLe {α : Type u} [LinearOrder α] :
        IsTrichotomous α fun (x1 x2 : α) => x1 x2
        instance instIsTrichotomousGe {α : Type u} [LinearOrder α] :
        IsTrichotomous α fun (x1 x2 : α) => x1 x2
        instance instIsStrictTotalOrderLt {α : Type u} [LinearOrder α] :
        IsStrictTotalOrder α fun (x1 x2 : α) => x1 < x2
        instance instIsOrderConnectedLt {α : Type u} [LinearOrder α] :
        IsOrderConnected α fun (x1 x2 : α) => x1 < x2
        instance OrderDual.isTotal_le {α : Type u} [LE α] [h : IsTotal α fun (x1 x2 : α) => x1 x2] :
        IsTotal αᵒᵈ fun (x1 x2 : αᵒᵈ) => x1 x2
        @[instance 100]
        instance isWellOrder_lt {α : Type u} [LinearOrder α] [WellFoundedLT α] :
        IsWellOrder α fun (x1 x2 : α) => x1 < x2
        @[instance 100]
        instance isWellOrder_gt {α : Type u} [LinearOrder α] [WellFoundedGT α] :
        IsWellOrder α fun (x1 x2 : α) => x1 > x2