Ordered rings and semirings #
This file develops the basics of ordered (semi)rings.
Each typeclass here comprises
- an algebraic class (
Semiring
,CommSemiring
,Ring
,CommRing
) - an order class (
PartialOrder
,LinearOrder
) - assumptions on how both interact ((strict) monotonicity, canonicity)
For short,
- "
+
respects≤
" means "monotonicity of addition" - "
+
respects<
" means "strict monotonicity of addition" - "
*
respects≤
" means "monotonicity of multiplication by a nonnegative number". - "
*
respects<
" means "strict monotonicity of multiplication by a positive number".
Typeclasses #
OrderedSemiring
: Semiring with a partial order such that+
and*
respect≤
.StrictOrderedSemiring
: Nontrivial semiring with a partial order such that+
and*
respects<
.OrderedCommSemiring
: Commutative semiring with a partial order such that+
and*
respect≤
.StrictOrderedCommSemiring
: Nontrivial commutative semiring with a partial order such that+
and*
respect<
.OrderedRing
: Ring with a partial order such that+
respects≤
and*
respects<
.OrderedCommRing
: Commutative ring with a partial order such that+
respects≤
and*
respects<
.LinearOrderedSemiring
: Nontrivial semiring with a linear order such that+
respects≤
and*
respects<
.LinearOrderedCommSemiring
: Nontrivial commutative semiring with a linear order such that+
respects≤
and*
respects<
.LinearOrderedRing
: Nontrivial ring with a linear order such that+
respects≤
and*
respects<
.LinearOrderedCommRing
: Nontrivial commutative ring with a linear order such that+
respects≤
and*
respects<
.
Hierarchy #
The hardest part of proving order lemmas might be to figure out the correct generality and its corresponding typeclass. Here's an attempt at demystifying it. For each typeclass, we list its immediate predecessors and what conditions are added to each of them.
OrderedSemiring
OrderedAddCommMonoid
& multiplication &*
respects≤
Semiring
& partial order structure &+
respects≤
&*
respects≤
StrictOrderedSemiring
OrderedCancelAddCommMonoid
& multiplication &*
respects<
& nontrivialityOrderedSemiring
&+
respects<
&*
respects<
& nontriviality
OrderedCommSemiring
OrderedSemiring
& commutativity of multiplicationCommSemiring
& partial order structure &+
respects≤
&*
respects<
StrictOrderedCommSemiring
StrictOrderedSemiring
& commutativity of multiplicationOrderedCommSemiring
&+
respects<
&*
respects<
& nontriviality
OrderedRing
OrderedSemiring
& additive inversesOrderedAddCommGroup
& multiplication &*
respects<
Ring
& partial order structure &+
respects≤
&*
respects<
StrictOrderedRing
StrictOrderedSemiring
& additive inversesOrderedSemiring
&+
respects<
&*
respects<
& nontriviality
OrderedCommRing
OrderedRing
& commutativity of multiplicationOrderedCommSemiring
& additive inversesCommRing
& partial order structure &+
respects≤
&*
respects<
StrictOrderedCommRing
StrictOrderedCommSemiring
& additive inversesStrictOrderedRing
& commutativity of multiplicationOrderedCommRing
&+
respects<
&*
respects<
& nontriviality
LinearOrderedSemiring
StrictOrderedSemiring
& totality of the orderLinearOrderedAddCommMonoid
& multiplication & nontriviality &*
respects<
LinearOrderedCommSemiring
StrictOrderedCommSemiring
& totality of the orderLinearOrderedSemiring
& commutativity of multiplication
LinearOrderedRing
StrictOrderedRing
& totality of the orderLinearOrderedSemiring
& additive inversesLinearOrderedAddCommGroup
& multiplication &*
respects<
Ring
&IsDomain
& linear order structure
LinearOrderedCommRing
StrictOrderedCommRing
& totality of the orderLinearOrderedRing
& commutativity of multiplicationLinearOrderedCommSemiring
& additive inversesCommRing
&IsDomain
& linear order structure
An ordered semiring is a semiring with a partial order such that addition is monotone and multiplication by a nonnegative number is monotone.
In an ordered semiring, we can multiply an inequality
a ≤ b
on the left by a non-negative element0 ≤ c
to obtainc * a ≤ c * b
.In an ordered semiring, we can multiply an inequality
a ≤ b
on the right by a non-negative element0 ≤ c
to obtaina * c ≤ b * c
.
Instances
A strict ordered semiring is a nontrivial semiring with a partial order such that addition is strictly monotone and multiplication by a positive number is strictly monotone.
In a strict ordered semiring, we can multiply an inequality
a < b
on the left by a positive element0 < c
to obtainc * a < c * b
.In a strict ordered semiring, we can multiply an inequality
a < b
on the right by a positive element0 < c
to obtaina * c < b * c
.
Instances
Turn an ordered domain into a strict ordered ring.
Note that OrderDual
does not satisfy any of the ordered ring typeclasses due to the
zero_le_one
field.
An OrderedSemiring
is a semiring with a partial order such that addition is monotone and
multiplication by a nonnegative number is monotone.
- add : R → R → R
- zero : R
- mul : R → R → R
- one : R
0 ≤ 1
in any ordered semiring.In an ordered semiring, we can multiply an inequality
a ≤ b
on the left by a non-negative element0 ≤ c
to obtainc * a ≤ c * b
.In an ordered semiring, we can multiply an inequality
a ≤ b
on the right by a non-negative element0 ≤ c
to obtaina * c ≤ b * c
.
An OrderedCommSemiring
is a commutative semiring with a partial order such that addition is
monotone and multiplication by a nonnegative number is monotone.
An OrderedRing
is a ring with a partial order such that addition is monotone and
multiplication by a nonnegative number is monotone.
An OrderedCommRing
is a commutative ring with a partial order such that addition is monotone
and multiplication by a nonnegative number is monotone.
A StrictOrderedSemiring
is a nontrivial semiring with a partial order such that addition is
strictly monotone and multiplication by a positive number is strictly monotone.
A StrictOrderedCommSemiring
is a commutative semiring with a partial order such that
addition is strictly monotone and multiplication by a positive number is strictly monotone.
A StrictOrderedRing
is a ring with a partial order such that addition is strictly monotone
and multiplication by a positive number is strictly monotone.
A StrictOrderedCommRing
is a commutative ring with a partial order such that addition is
strictly monotone and multiplication by a positive number is strictly monotone.
A LinearOrderedSemiring
is a nontrivial semiring with a linear order such that
addition is monotone and multiplication by a positive number is strictly monotone.
A LinearOrderedCommSemiring
is a nontrivial commutative semiring with a linear order such
that addition is monotone and multiplication by a positive number is strictly monotone.
A LinearOrderedRing
is a ring with a linear order such that addition is monotone and
multiplication by a positive number is strictly monotone.
A LinearOrderedCommRing
is a commutative ring with a linear order such that addition is
monotone and multiplication by a positive number is strictly monotone.