Documentation

Mathlib.Order.BoundedOrder.Basic

⊤ and ⊥, bounded lattices and variants #

This file defines top and bottom elements (greatest and least elements) of a type, the bounded variants of different kinds of lattices, sets up the typeclass hierarchy between them and provides instances for Prop and fun.

Main declarations #

Top, bottom element #

class OrderTop (α : Type u) [LE α] extends Top α :

An order is an OrderTop if it has a greatest element. We state this using a data mixin, holding the value of and the greatest element constraint.

  • top : α
  • le_top (a : α) : a

    is the greatest element

Instances
    noncomputable def topOrderOrNoTopOrder (α : Type u_1) [LE α] :

    An order is (noncomputably) either an OrderTop or a NoTopOrder. Use as casesI topOrderOrNoTopOrder α.

    Equations
    @[simp]
    theorem le_top {α : Type u} [LE α] [OrderTop α] {a : α} :
    @[simp]
    theorem isTop_top {α : Type u} [LE α] [OrderTop α] :
    def IsTop.rec {α : Type u} [LE α] {P : (x : α) → IsTop xSort u_1} (h : [inst : OrderTop α] → P ) (x : α) (hx : IsTop x) :
    P x hx

    A top element can be replaced with .

    Prefer IsTop.eq_top if α already has a top element.

    Equations
    @[simp]
    theorem isMax_top {α : Type u} [Preorder α] [OrderTop α] :
    @[simp]
    theorem not_top_lt {α : Type u} [Preorder α] [OrderTop α] {a : α} :
    theorem ne_top_of_lt {α : Type u} [Preorder α] [OrderTop α] {a b : α} (h : a < b) :
    theorem LT.lt.ne_top {α : Type u} [Preorder α] [OrderTop α] {a b : α} (h : a < b) :

    Alias of ne_top_of_lt.

    theorem lt_top_of_lt {α : Type u} [Preorder α] [OrderTop α] {a b : α} (h : a < b) :
    a <
    theorem LT.lt.lt_top {α : Type u} [Preorder α] [OrderTop α] {a b : α} (h : a < b) :
    a <

    Alias of lt_top_of_lt.

    @[simp]
    theorem isMax_iff_eq_top {α : Type u} [PartialOrder α] [OrderTop α] {a : α} :
    @[simp]
    theorem isTop_iff_eq_top {α : Type u} [PartialOrder α] [OrderTop α] {a : α} :
    theorem not_isMax_iff_ne_top {α : Type u} [PartialOrder α] [OrderTop α] {a : α} :
    theorem not_isTop_iff_ne_top {α : Type u} [PartialOrder α] [OrderTop α] {a : α} :
    theorem IsMax.eq_top {α : Type u} [PartialOrder α] [OrderTop α] {a : α} :
    IsMax aa =

    Alias of the forward direction of isMax_iff_eq_top.

    theorem IsTop.eq_top {α : Type u} [PartialOrder α] [OrderTop α] {a : α} :
    IsTop aa =

    Alias of the forward direction of isTop_iff_eq_top.

    @[simp]
    theorem top_le_iff {α : Type u} [PartialOrder α] [OrderTop α] {a : α} :
    theorem top_unique {α : Type u} [PartialOrder α] [OrderTop α] {a : α} (h : a) :
    a =
    theorem eq_top_iff {α : Type u} [PartialOrder α] [OrderTop α] {a : α} :
    theorem eq_top_mono {α : Type u} [PartialOrder α] [OrderTop α] {a b : α} (h : a b) (h₂ : a = ) :
    b =
    theorem lt_top_iff_ne_top {α : Type u} [PartialOrder α] [OrderTop α] {a : α} :
    @[simp]
    theorem not_lt_top_iff {α : Type u} [PartialOrder α] [OrderTop α] {a : α} :
    theorem eq_top_or_lt_top {α : Type u} [PartialOrder α] [OrderTop α] (a : α) :
    a = a <
    theorem Ne.lt_top {α : Type u} [PartialOrder α] [OrderTop α] {a : α} (h : a ) :
    a <
    theorem Ne.lt_top' {α : Type u} [PartialOrder α] [OrderTop α] {a : α} (h : a) :
    a <
    theorem ne_top_of_le_ne_top {α : Type u} [PartialOrder α] [OrderTop α] {a b : α} (hb : b ) (hab : a b) :
    theorem top_not_mem_iff {α : Type u} [PartialOrder α] [OrderTop α] {s : Set α} :
    ¬ s ∀ (x : α), x sx <
    theorem OrderTop.ext_top {α : Type u_1} {hA : PartialOrder α} (A : OrderTop α) {hB : PartialOrder α} (B : OrderTop α) (H : ∀ (x y : α), x y x y) :
    class OrderBot (α : Type u) [LE α] extends Bot α :

    An order is an OrderBot if it has a least element. We state this using a data mixin, holding the value of and the least element constraint.

    • bot : α
    • bot_le (a : α) : a

      is the least element

    Instances
      noncomputable def botOrderOrNoBotOrder (α : Type u_1) [LE α] :

      An order is (noncomputably) either an OrderBot or a NoBotOrder. Use as casesI botOrderOrNoBotOrder α.

      Equations
      @[simp]
      theorem bot_le {α : Type u} [LE α] [OrderBot α] {a : α} :
      @[simp]
      theorem isBot_bot {α : Type u} [LE α] [OrderBot α] :
      def IsBot.rec {α : Type u} [LE α] {P : (x : α) → IsBot xSort u_1} (h : [inst : OrderBot α] → P ) (x : α) (hx : IsBot x) :
      P x hx

      A bottom element can be replaced with .

      Prefer IsBot.eq_bot if α already has a bottom element.

      Equations
      instance OrderDual.instTop (α : Type u) [Bot α] :
      Equations
      instance OrderDual.instBot (α : Type u) [Top α] :
      Equations
      instance OrderDual.instOrderTop (α : Type u) [LE α] [OrderBot α] :
      Equations
      instance OrderDual.instOrderBot (α : Type u) [LE α] [OrderTop α] :
      Equations
      @[simp]
      theorem OrderDual.ofDual_bot (α : Type u) [Top α] :
      @[simp]
      theorem OrderDual.ofDual_top (α : Type u) [Bot α] :
      @[simp]
      theorem OrderDual.toDual_bot (α : Type u) [Bot α] :
      @[simp]
      theorem OrderDual.toDual_top (α : Type u) [Top α] :
      @[simp]
      theorem isMin_bot {α : Type u} [Preorder α] [OrderBot α] :
      @[simp]
      theorem not_lt_bot {α : Type u} [Preorder α] [OrderBot α] {a : α} :
      theorem ne_bot_of_gt {α : Type u} [Preorder α] [OrderBot α] {a b : α} (h : a < b) :
      theorem LT.lt.ne_bot {α : Type u} [Preorder α] [OrderBot α] {a b : α} (h : a < b) :

      Alias of ne_bot_of_gt.

      theorem bot_lt_of_lt {α : Type u} [Preorder α] [OrderBot α] {a b : α} (h : a < b) :
      < b
      theorem LT.lt.bot_lt {α : Type u} [Preorder α] [OrderBot α] {a b : α} (h : a < b) :
      < b

      Alias of bot_lt_of_lt.

      @[simp]
      theorem isMin_iff_eq_bot {α : Type u} [PartialOrder α] [OrderBot α] {a : α} :
      @[simp]
      theorem isBot_iff_eq_bot {α : Type u} [PartialOrder α] [OrderBot α] {a : α} :
      theorem not_isMin_iff_ne_bot {α : Type u} [PartialOrder α] [OrderBot α] {a : α} :
      theorem not_isBot_iff_ne_bot {α : Type u} [PartialOrder α] [OrderBot α] {a : α} :
      theorem IsMin.eq_bot {α : Type u} [PartialOrder α] [OrderBot α] {a : α} :
      IsMin aa =

      Alias of the forward direction of isMin_iff_eq_bot.

      theorem IsBot.eq_bot {α : Type u} [PartialOrder α] [OrderBot α] {a : α} :
      IsBot aa =

      Alias of the forward direction of isBot_iff_eq_bot.

      @[simp]
      theorem le_bot_iff {α : Type u} [PartialOrder α] [OrderBot α] {a : α} :
      theorem bot_unique {α : Type u} [PartialOrder α] [OrderBot α] {a : α} (h : a ) :
      a =
      theorem eq_bot_iff {α : Type u} [PartialOrder α] [OrderBot α] {a : α} :
      theorem eq_bot_mono {α : Type u} [PartialOrder α] [OrderBot α] {a b : α} (h : a b) (h₂ : b = ) :
      a =
      theorem bot_lt_iff_ne_bot {α : Type u} [PartialOrder α] [OrderBot α] {a : α} :
      @[simp]
      theorem not_bot_lt_iff {α : Type u} [PartialOrder α] [OrderBot α] {a : α} :
      theorem eq_bot_or_bot_lt {α : Type u} [PartialOrder α] [OrderBot α] (a : α) :
      a = < a
      theorem eq_bot_of_minimal {α : Type u} [PartialOrder α] [OrderBot α] {a : α} (h : ∀ (b : α), ¬b < a) :
      a =
      theorem Ne.bot_lt {α : Type u} [PartialOrder α] [OrderBot α] {a : α} (h : a ) :
      < a
      theorem Ne.bot_lt' {α : Type u} [PartialOrder α] [OrderBot α] {a : α} (h : a) :
      < a
      theorem ne_bot_of_le_ne_bot {α : Type u} [PartialOrder α] [OrderBot α] {a b : α} (hb : b ) (hab : b a) :
      theorem bot_not_mem_iff {α : Type u} [PartialOrder α] [OrderBot α] {s : Set α} :
      ¬ s ∀ (x : α), x s < x
      theorem OrderBot.ext_bot {α : Type u_1} {hA : PartialOrder α} (A : OrderBot α) {hB : PartialOrder α} (B : OrderBot α) (H : ∀ (x y : α), x y x y) :

      Bounded order #

      class BoundedOrder (α : Type u) [LE α] extends OrderTop α, OrderBot α :

      A bounded order describes an order (≤) with a top and bottom element, denoted and respectively.

      Instances

        Function lattices #

        instance Pi.instBotForall {ι : Type u_1} {α' : ιType u_2} [(i : ι) → Bot (α' i)] :
        Bot ((i : ι) → α' i)
        Equations
        @[simp]
        theorem Pi.bot_apply {ι : Type u_1} {α' : ιType u_2} [(i : ι) → Bot (α' i)] (i : ι) :
        theorem Pi.bot_def {ι : Type u_1} {α' : ιType u_2} [(i : ι) → Bot (α' i)] :
        = fun (x : ι) =>
        instance Pi.instTopForall {ι : Type u_1} {α' : ιType u_2} [(i : ι) → Top (α' i)] :
        Top ((i : ι) → α' i)
        Equations
        @[simp]
        theorem Pi.top_apply {ι : Type u_1} {α' : ιType u_2} [(i : ι) → Top (α' i)] (i : ι) :
        theorem Pi.top_def {ι : Type u_1} {α' : ιType u_2} [(i : ι) → Top (α' i)] :
        = fun (x : ι) =>
        instance Pi.instOrderTop {ι : Type u_1} {α' : ιType u_2} [(i : ι) → LE (α' i)] [(i : ι) → OrderTop (α' i)] :
        OrderTop ((i : ι) → α' i)
        Equations
        instance Pi.instOrderBot {ι : Type u_1} {α' : ιType u_2} [(i : ι) → LE (α' i)] [(i : ι) → OrderBot (α' i)] :
        OrderBot ((i : ι) → α' i)
        Equations
        instance Pi.instBoundedOrder {ι : Type u_1} {α' : ιType u_2} [(i : ι) → LE (α' i)] [(i : ι) → BoundedOrder (α' i)] :
        BoundedOrder ((i : ι) → α' i)
        Equations
        theorem eq_bot_of_bot_eq_top {α : Type u} [PartialOrder α] [BoundedOrder α] ( : = ) (x : α) :
        x =
        theorem eq_top_of_bot_eq_top {α : Type u} [PartialOrder α] [BoundedOrder α] ( : = ) (x : α) :
        x =
        @[reducible, inline]
        abbrev OrderTop.lift {α : Type u} {β : Type v} [LE α] [Top α] [LE β] [OrderTop β] (f : αβ) (map_le : ∀ (a b : α), f a f ba b) (map_top : f = ) :

        Pullback an OrderTop.

        Equations
        • OrderTop.lift f map_le map_top = { toTop := inst✝², le_top := }
        @[reducible, inline]
        abbrev OrderBot.lift {α : Type u} {β : Type v} [LE α] [Bot α] [LE β] [OrderBot β] (f : αβ) (map_le : ∀ (a b : α), f a f ba b) (map_bot : f = ) :

        Pullback an OrderBot.

        Equations
        • OrderBot.lift f map_le map_bot = { toBot := inst✝², bot_le := }
        @[reducible, inline]
        abbrev BoundedOrder.lift {α : Type u} {β : Type v} [LE α] [Top α] [Bot α] [LE β] [BoundedOrder β] (f : αβ) (map_le : ∀ (a b : α), f a f ba b) (map_top : f = ) (map_bot : f = ) :

        Pullback a BoundedOrder.

        Equations

        Subtype, order dual, product lattices #

        @[reducible, inline]
        abbrev Subtype.orderBot {α : Type u} {p : αProp} [LE α] [OrderBot α] (hbot : p ) :
        OrderBot { x : α // p x }

        A subtype remains a -order if the property holds at .

        Equations
        @[reducible, inline]
        abbrev Subtype.orderTop {α : Type u} {p : αProp} [LE α] [OrderTop α] (htop : p ) :
        OrderTop { x : α // p x }

        A subtype remains a -order if the property holds at .

        Equations
        @[reducible, inline]
        abbrev Subtype.boundedOrder {α : Type u} {p : αProp} [LE α] [BoundedOrder α] (hbot : p ) (htop : p ) :

        A subtype remains a bounded order if the property holds at and .

        Equations
        @[simp]
        theorem Subtype.mk_bot {α : Type u} {p : αProp} [PartialOrder α] [OrderBot α] [OrderBot (Subtype p)] (hbot : p ) :
        , hbot =
        @[simp]
        theorem Subtype.mk_top {α : Type u} {p : αProp} [PartialOrder α] [OrderTop α] [OrderTop (Subtype p)] (htop : p ) :
        , htop =
        theorem Subtype.coe_bot {α : Type u} {p : αProp} [PartialOrder α] [OrderBot α] [OrderBot (Subtype p)] (hbot : p ) :
        =
        theorem Subtype.coe_top {α : Type u} {p : αProp} [PartialOrder α] [OrderTop α] [OrderTop (Subtype p)] (htop : p ) :
        =
        @[simp]
        theorem Subtype.coe_eq_bot_iff {α : Type u} {p : αProp} [PartialOrder α] [OrderBot α] [OrderBot (Subtype p)] (hbot : p ) {x : { x : α // p x }} :
        x = x =
        @[simp]
        theorem Subtype.coe_eq_top_iff {α : Type u} {p : αProp} [PartialOrder α] [OrderTop α] [OrderTop (Subtype p)] (htop : p ) {x : { x : α // p x }} :
        x = x =
        @[simp]
        theorem Subtype.mk_eq_bot_iff {α : Type u} {p : αProp} [PartialOrder α] [OrderBot α] [OrderBot (Subtype p)] (hbot : p ) {x : α} (hx : p x) :
        x, hx = x =
        @[simp]
        theorem Subtype.mk_eq_top_iff {α : Type u} {p : αProp} [PartialOrder α] [OrderTop α] [OrderTop (Subtype p)] (htop : p ) {x : α} (hx : p x) :
        x, hx = x =
        instance Prod.instTop (α : Type u) (β : Type v) [Top α] [Top β] :
        Top (α × β)
        Equations
        instance Prod.instBot (α : Type u) (β : Type v) [Bot α] [Bot β] :
        Bot (α × β)
        Equations
        @[simp]
        theorem Prod.fst_top (α : Type u) (β : Type v) [Top α] [Top β] :
        @[simp]
        theorem Prod.snd_top (α : Type u) (β : Type v) [Top α] [Top β] :
        @[simp]
        theorem Prod.fst_bot (α : Type u) (β : Type v) [Bot α] [Bot β] :
        @[simp]
        theorem Prod.snd_bot (α : Type u) (β : Type v) [Bot α] [Bot β] :
        instance Prod.instOrderTop (α : Type u) (β : Type v) [LE α] [LE β] [OrderTop α] [OrderTop β] :
        OrderTop (α × β)
        Equations
        instance Prod.instOrderBot (α : Type u) (β : Type v) [LE α] [LE β] [OrderBot α] [OrderBot β] :
        OrderBot (α × β)
        Equations
        instance Prod.instBoundedOrder (α : Type u) (β : Type v) [LE α] [LE β] [BoundedOrder α] [BoundedOrder β] :
        Equations
        instance ULift.instTop {α : Type u} [Top α] :
        Equations
        @[simp]
        theorem ULift.up_top {α : Type u} [Top α] :
        { down := } =
        @[simp]
        theorem ULift.down_top {α : Type u} [Top α] :
        instance ULift.instBot {α : Type u} [Bot α] :
        Equations
        @[simp]
        theorem ULift.up_bot {α : Type u} [Bot α] :
        { down := } =
        @[simp]
        theorem ULift.down_bot {α : Type u} [Bot α] :
        @[simp]
        theorem bot_ne_top {α : Type u} [PartialOrder α] [BoundedOrder α] [Nontrivial α] :
        @[simp]
        theorem top_ne_bot {α : Type u} [PartialOrder α] [BoundedOrder α] [Nontrivial α] :
        @[simp]
        theorem bot_lt_top {α : Type u} [PartialOrder α] [BoundedOrder α] [Nontrivial α] :
        Equations
        @[simp]
        @[simp]