Documentation

Carleson.ToMathlib.RealInterpolation.Main

The Marcinkiewisz real interpolation theorem #

This file contains a proof of the Marcinkiewisz real interpolation theorem. The proof roughly follows Folland, Real Analysis. Modern Techniques and Their Applications, section 6.4, theorem 6.28, but a different truncation is used, and some estimates instead follow the technique as e.g. described in [Duoandikoetxea, Fourier Analysis, 2000].

This file has the definitions for the main proof, and the final proof of the theorem. A few other files contain the necessary pre-requisites:

TODO #

Generalise this to functions taking values in ℝ≥0∞, instead of ℝ. This entails generalising most intermediate lemmas from normed spaces to the appropriate enorm classes.

The real interpolation theorem #

Definitions #

def MeasureTheory.Subadditive {α : Type u_1} {α' : Type u_2} {ε : Type u_3} {ε₁ : Type u_8} [TopologicalSpace ε₁] [ENormedAddMonoid ε₁] [ENorm ε] (T : (αε₁)α'ε) :
Equations
Instances For
    def MeasureTheory.Subadditive_trunc {α : Type u_1} {α' : Type u_2} {ε : Type u_3} {m' : MeasurableSpace α'} {ε₁ : Type u_8} [TopologicalSpace ε₁] [ENormedAddMonoid ε₁] [ENorm ε] (T : (αε₁)α'ε) (A : ENNReal) (f : αε₁) (ν : Measure α') :
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      def MeasureTheory.AESubadditiveOn {α : Type u_1} {α' : Type u_2} {ε : Type u_3} {m' : MeasurableSpace α'} {ε₁ : Type u_8} [TopologicalSpace ε₁] [ENormedAddMonoid ε₁] [ENorm ε] (T : (αε₁)α'ε) (P : (αε₁)Prop) (A : ENNReal) (ν : Measure α') :

      The operator is subadditive on functions satisfying P with constant A (this is almost vacuous if A = ⊤).

      Equations
      Instances For
        theorem MeasureTheory.AESubadditiveOn.antitone {α : Type u_1} {α' : Type u_2} {ε : Type u_3} {m' : MeasurableSpace α'} {ε₁ : Type u_8} [TopologicalSpace ε₁] [ENormedAddMonoid ε₁] [TopologicalSpace ε] [ENormedAddMonoid ε] {ν : Measure α'} {T : (αε₁)α'ε} {P P' : (αε₁)Prop} (h : ∀ {u : αε₁}, P uP' u) {A : ENNReal} (sa : AESubadditiveOn T P' A ν) :
        theorem MeasureTheory.AESubadditiveOn.zero {α : Type u_1} {α' : Type u_2} {m' : MeasurableSpace α'} {ε₁ : Type u_8} {ε₂ : Type u_9} [TopologicalSpace ε₁] [ENormedAddMonoid ε₁] [TopologicalSpace ε₂] [ENormedAddMonoid ε₂] {ν : Measure α'} {T : (αε₁)α'ε₂} {P : (αε₁)Prop} (hP : ∀ {f g : αε₁}, P fP gP (f + g)) (A : ENNReal) (h : ∀ (u : αε₁), P uT u =ᶠ[ae ν] 0) :
        theorem MeasureTheory.AESubadditiveOn.forall_le {α : Type u_1} {α' : Type u_2} {ε : Type u_3} {m' : MeasurableSpace α'} {ε₁ : Type u_8} [TopologicalSpace ε₁] [ENormedAddMonoid ε₁] [TopologicalSpace ε] [ENormedAddMonoid ε] {ν : Measure α'} {ι : Type u_10} {𝓑 : Set ι} (h𝓑 : 𝓑.Countable) {T : ι(αε₁)α'ε} {P : (αε₁)Prop} {A : ENNReal} (h : i𝓑, AESubadditiveOn (T i) P A ν) {f g : αε₁} (hf : P f) (hg : P g) :
        ∀ᵐ (x : α') ν, i𝓑, T i (f + g) x‖ₑ A * (T i f x‖ₑ + T i g x‖ₑ)
        theorem MeasureTheory.AESubadditiveOn.biSup {α : Type u_1} {α' : Type u_2} {m' : MeasurableSpace α'} {ε₁ : Type u_8} [TopologicalSpace ε₁] [ENormedAddMonoid ε₁] {ν : Measure α'} {ι : Type u_10} {𝓑 : Set ι} (h𝓑 : 𝓑.Countable) {T : ι(αε₁)α'ENNReal} {P : (αε₁)Prop} (hT : ∀ (u : αε₁), P u∀ᵐ (x : α') ν, i𝓑, T i u x ) (hP : ∀ {f g : αε₁}, P fP gP (f + g)) {A : ENNReal} (h : i𝓑, AESubadditiveOn (T i) P A ν) :
        AESubadditiveOn (fun (u : αε₁) (x : α') => i𝓑, T i u x) P A ν
        theorem MeasureTheory.AESubadditiveOn.indicator {α : Type u_1} {α' : Type u_2} {ε : Type u_3} {m' : MeasurableSpace α'} {ε₁ : Type u_8} [TopologicalSpace ε₁] [ENormedAddMonoid ε₁] [TopologicalSpace ε] [ENormedAddMonoid ε] {ν : Measure α'} {T : (αε₁)α'ε} {P : (αε₁)Prop} {A : ENNReal} (sa : AESubadditiveOn T P A ν) (S : Set α') :
        AESubadditiveOn (fun (u : αε₁) (x : α') => S.indicator (fun (y : α') => T u y) x) P A ν
        theorem MeasureTheory.AESubadditiveOn.const {α : Type u_1} {α' : Type u_2} {ε : Type u_3} {m' : MeasurableSpace α'} {ε₁ : Type u_8} [TopologicalSpace ε₁] [ENormedAddMonoid ε₁] [TopologicalSpace ε] [ENormedAddMonoid ε] {ν : Measure α'} (T : (αε₁)ε) (P : (αε₁)Prop) (h_add : ∀ {f g : αε₁}, P fP gT (f + g)‖ₑ T f‖ₑ + T g‖ₑ) :
        AESubadditiveOn (fun (u : αε₁) (x : α') => T u) P 1 ν
        def MeasureTheory.AESublinearOn {α : Type u_1} {α' : Type u_2} {ε : Type u_3} {m' : MeasurableSpace α'} [TopologicalSpace ε] [ENormedSpace ε] {ε₁ : Type u_10} [TopologicalSpace ε₁] [ENormedSpace ε₁] (T : (αε₁)α'ε) (P : (αε₁)Prop) (A : ENNReal) (ν : Measure α') :

        The operator is sublinear on functions satisfying P with constant A.

        Equations
        Instances For
          theorem MeasureTheory.AESublinearOn.antitone {α : Type u_1} {α' : Type u_2} {ε : Type u_3} {m' : MeasurableSpace α'} [TopologicalSpace ε] [ENormedSpace ε] {ε₁ : Type u_10} [TopologicalSpace ε₁] [ENormedSpace ε₁] {ν : Measure α'} {T : (αε₁)α'ε} {P P' : (αε₁)Prop} (h : ∀ {u : αε₁}, P uP' u) {A : ENNReal} (sl : AESublinearOn T P' A ν) :
          AESublinearOn T P A ν
          theorem MeasureTheory.AESublinearOn.biSup {α : Type u_1} {α' : Type u_2} {m' : MeasurableSpace α'} {ε₁ : Type u_10} [TopologicalSpace ε₁] [ENormedSpace ε₁] {ν : Measure α'} {ι : Type u_12} {𝓑 : Set ι} (h𝓑 : 𝓑.Countable) {T : ι(αε₁)α'ENNReal} {P : (αε₁)Prop} (hT : ∀ (u : αε₁), P u∀ᵐ (x : α') ν, i𝓑, T i u x ) (h_add : ∀ {f g : αε₁}, P fP gP (f + g)) (h_smul : ∀ {f : αε₁} {c : NNReal}, P fP (c f)) {A : ENNReal} (h : i𝓑, AESublinearOn (T i) P A ν) :
          AESublinearOn (fun (u : αε₁) (x : α') => i𝓑, T i u x) P A ν
          theorem MeasureTheory.AESublinearOn.biSup2 {α : Type u_1} {α' : Type u_2} {m' : MeasurableSpace α'} {ε₁ : Type u_10} [TopologicalSpace ε₁] [ENormedSpace ε₁] {ν : Measure α'} {ι : Type u_12} {𝓑 : Set ι} (h𝓑 : 𝓑.Countable) {T : ι(αε₁)α'ENNReal} {P Q : (αε₁)Prop} (hPT : ∀ (u : αε₁), P u∀ᵐ (x : α') ν, i𝓑, T i u x ) (hQT : ∀ (u : αε₁), Q u∀ᵐ (x : α') ν, i𝓑, T i u x ) (P0 : P 0) (Q0 : Q 0) (haP : ∀ {f g : αε₁}, P fP gP (f + g)) (haQ : ∀ {f g : αε₁}, Q fQ gQ (f + g)) (hsP : ∀ {f : αε₁} {c : NNReal}, P fP (c f)) (hsQ : ∀ {f : αε₁} {c : NNReal}, Q fQ (c f)) {A : NNReal} (hAP : i𝓑, AESublinearOn (T i) (fun (g : αε₁) => g {f : αε₁ | P f} + {f : αε₁ | Q f}) (↑A) ν) :
          AESublinearOn (fun (u : αε₁) (x : α') => i𝓑, T i u x) (fun (f : αε₁) => P f Q f) (↑A) ν
          theorem MeasureTheory.AESublinearOn.indicator {α : Type u_1} {α' : Type u_2} {ε : Type u_3} {m' : MeasurableSpace α'} [TopologicalSpace ε] [ENormedSpace ε] {ε₁ : Type u_10} [TopologicalSpace ε₁] [ENormedSpace ε₁] {ν : Measure α'} {T : (αε₁)α'ε} {P : (αε₁)Prop} {A : ENNReal} (S : Set α') (sl : AESublinearOn T P A ν) :
          AESublinearOn (fun (u : αε₁) (x : α') => S.indicator (fun (y : α') => T u y) x) P A ν
          theorem MeasureTheory.AESublinearOn.const {α : Type u_1} {α' : Type u_2} {ε : Type u_3} {m' : MeasurableSpace α'} [TopologicalSpace ε] [ENormedSpace ε] {ε₁ : Type u_10} [TopologicalSpace ε₁] [ENormedSpace ε₁] {ν : Measure α'} (T : (αε₁)ε) (P : (αε₁)Prop) (h_add : ∀ {f g : αε₁}, P fP gT (f + g)‖ₑ T f‖ₑ + T g‖ₑ) (h_smul : ∀ (f : αε₁) {c : NNReal}, P fT (c f) = c T f) :
          AESublinearOn (fun (u : αε₁) (x : α') => T u) P 1 ν
          theorem MeasureTheory.AESublinearOn.toReal {α : Type u_1} {α' : Type u_2} {m' : MeasurableSpace α'} {ε₁ : Type u_10} [TopologicalSpace ε₁] [ENormedSpace ε₁] {ν : Measure α'} {T : (αε₁)α'ENNReal} {P : (αε₁)Prop} {A : ENNReal} (h : AESublinearOn T P A ν) (hP : ∀ (u : αε₁), P u∀ᵐ (x : α') ν, T u x ) :
          AESublinearOn (fun (x1 : αε₁) (x2 : α') => (T x1 x2).toReal) P A ν

          Proof of the real interpolation theorem #

          In this section the estimates are combined to finally give a proof of the
          real interpolation theorem.
          
          def MeasureTheory.PreservesAEStrongMeasurability {α : Type u_1} {α' : Type u_2} {m : MeasurableSpace α} {m' : MeasurableSpace α'} {μ : Measure α} {ν : Measure α'} {ε₁ : Type u_7} {ε₂ : Type u_8} [TopologicalSpace ε₁] [ENormedAddMonoid ε₁] [TopologicalSpace ε₂] (T : (αε₁)α'ε₂) (p : ENNReal) :

          Proposition that expresses that the map T map between function spaces preserves AE strong measurability on L^p.

          Equations
          Instances For
            theorem MeasureTheory.estimate_distribution_Subadditive_trunc {α : Type u_1} {α' : Type u_2} {m' : MeasurableSpace α'} {ν : Measure α'} {t : ENNReal} {ε₁ : Type u_7} {ε₂ : Type u_8} [TopologicalSpace ε₁] [ENormedAddMonoid ε₁] [TopologicalSpace ε₂] [ENormedAddMonoid ε₂] {f : αε₁} {T : (αε₁)α'ε₂} {a : ENNReal} (ha : 0 < a) {A : ENNReal} (h : Subadditive_trunc T A f ν) :
            distribution (T f) (2 * A * t) ν distribution (T (trunc f a)) t ν + distribution (T (truncCompl f a)) t ν
            theorem MeasureTheory.rewrite_norm_func {α' : Type u_2} {E : Type u_3} {m' : MeasurableSpace α'} {ν : Measure α'} {q : } {g : α'E} [TopologicalSpace E] [ENormedAddCommMonoid E] (hq : 0 < q) {A : NNReal} (hA : 0 < A) (hg : AEStronglyMeasurable g ν) :
            ∫⁻ (x : α'), g x‖ₑ ^ q ν = ENNReal.ofReal ((2 * A) ^ q * q) * ∫⁻ (s : ENNReal), distribution g (ENNReal.ofReal (2 * A) * s) ν * s ^ (q - 1)
            theorem MeasureTheory.estimate_norm_rpow_range_operator {α : Type u_1} {α' : Type u_2} {E₁ : Type u_4} {E₂ : Type u_5} {m' : MeasurableSpace α'} {ν : Measure α'} {T : (αE₁)α'E₂} {q : } {f : αE₁} [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] [TopologicalSpace E₂] [ENormedAddCommMonoid E₂] (hq : 0 < q) (tc : StrictRangeToneCouple) {A : NNReal} (hA : 0 < A) (ht : Subadditive_trunc T (↑A) f ν) (hTf : AEStronglyMeasurable (T f) ν) :
            ∫⁻ (x : α'), T f x‖ₑ ^ q ν ENNReal.ofReal ((2 * A) ^ q * q) * ∫⁻ (s : ENNReal), distribution (T (trunc f (tc.ton s))) s ν * s ^ (q - 1) + distribution (T (truncCompl f (tc.ton s))) s ν * s ^ (q - 1)
            theorem MeasureTheory.ton_measurable_eLpNorm_trunc {α : Type u_1} {E₁ : Type u_4} {m : MeasurableSpace α} {p₁ : ENNReal} {μ : Measure α} {f : αE₁} [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] (tc : ToneCouple) :
            Measurable fun (x : ENNReal) => eLpNorm (trunc f (tc.ton x)) p₁ μ
            theorem MeasureTheory.estimate_norm_rpow_range_operator' {α : Type u_1} {α' : Type u_2} {E₁ : Type u_4} {E₂ : Type u_5} {m : MeasurableSpace α} {m' : MeasurableSpace α'} {p q p₀ q₀ p₁ q₁ : ENNReal} {C₀ C₁ : NNReal} {μ : Measure α} {ν : Measure α'} {f : αE₁} {T : (αE₁)α'E₂} [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] [TopologicalSpace E₂] [ENormedAddCommMonoid E₂] (hp₀ : 0 < p₀) (hq₀ : 0 < q₀) (hq₁ : 0 < q₁) (hp₁p : p < p₁) (hp₀p : p₀ < p) (tc : StrictRangeToneCouple) (hq₀' : q₀ = s > 0, distribution (T (truncCompl f (tc.ton s))) s ν = 0) (hq₁' : q₁ = s > 0, distribution (T (trunc f (tc.ton s))) s ν = 0) (hf : MemLp f p μ) (hT₁ : HasWeakType T p₁ q₁ μ ν C₁) (hT₀ : HasWeakType T p₀ q₀ μ ν C₀) :
            ∫⁻ (s : ENNReal), distribution (T (trunc f (tc.ton s))) s ν * s ^ (q.toReal - 1) + distribution (T (truncCompl f (tc.ton s))) s ν * s ^ (q.toReal - 1) (if q₁ < then 1 else 0) * (C₁ ^ q₁.toReal * ∫⁻ (s : ENNReal), eLpNorm (trunc f (tc.ton s)) p₁ μ ^ q₁.toReal * s ^ (q.toReal - q₁.toReal - 1)) + (if q₀ < then 1 else 0) * (C₀ ^ q₀.toReal * ∫⁻ (s : ENNReal), eLpNorm (truncCompl f (tc.ton s)) p₀ μ ^ q₀.toReal * s ^ (q.toReal - q₀.toReal - 1))
            theorem MeasureTheory.simplify_factor_rw_aux₀ (a b c d e f : ENNReal) :
            a * b * c * d * e * f = a * c * e * (b * d * f)
            theorem MeasureTheory.simplify_factor_rw_aux₁ (a b c d e f : ENNReal) :
            a * b * c * d * e * f = c * (a * e) * (b * f * d)
            theorem MeasureTheory.simplify_factor₀ {α : Type u_1} {E₁ : Type u_4} {m : MeasurableSpace α} {p q p₀ q₀ p₁ q₁ : ENNReal} {C₀ C₁ : NNReal} {μ : Measure α} {f : αE₁} {t D : ENNReal} [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] (hq₀' : q₀ ) (hp₀ : p₀ Set.Ioc 0 q₀) (hp₁ : p₁ Set.Ioc 0 q₁) (ht : t Set.Ioo 0 1) (hq₀q₁ : q₀ q₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) (hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹) (hC₀ : 0 < C₀) (hC₁ : 0 < C₁) (hF : eLpNorm f p μ Set.Ioo 0 ) (hD : D = ChoiceScale.d) :
            C₀ ^ q₀.toReal * (eLpNorm f p μ ^ p.toReal) ^ (q₀.toReal / p₀.toReal) * D ^ (q.toReal - q₀.toReal) = C₀ ^ ((1 - t).toReal * q.toReal) * C₁ ^ (t.toReal * q.toReal) * eLpNorm f p μ ^ q.toReal
            theorem MeasureTheory.simplify_factor₁ {α : Type u_1} {E₁ : Type u_4} {m : MeasurableSpace α} {p q p₀ q₀ p₁ q₁ : ENNReal} {C₀ C₁ : NNReal} {μ : Measure α} {f : αE₁} {t D : ENNReal} [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] (hq₁' : q₁ ) (hp₀ : p₀ Set.Ioc 0 q₀) (hp₁ : p₁ Set.Ioc 0 q₁) (ht : t Set.Ioo 0 1) (hq₀q₁ : q₀ q₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) (hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹) (hC₀ : 0 < C₀) (hC₁ : 0 < C₁) (hF : eLpNorm f p μ Set.Ioo 0 ) (hD : D = ChoiceScale.d) :
            C₁ ^ q₁.toReal * (eLpNorm f p μ ^ p.toReal) ^ (q₁.toReal / p₁.toReal) * D ^ (q.toReal - q₁.toReal) = C₀ ^ ((1 - t).toReal * q.toReal) * C₁ ^ (t.toReal * q.toReal) * eLpNorm f p μ ^ q.toReal
            def MeasureTheory.finite_spanning_sets_from_lintegrable {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {g : αENNReal} (hg : AEMeasurable g μ) (hg_int : ∫⁻ (x : α), g x μ < ) :
            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              theorem MeasureTheory.support_sigma_finite_of_lintegrable {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {g : αENNReal} (hg : AEMeasurable g μ) (hg_int : ∫⁻ (x : α), g x μ < ) :
              theorem MeasureTheory.support_sigma_finite_from_MemLp {α : Type u_1} {E₁ : Type u_4} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {f : αE₁} [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] (hf : MemLp f p μ) (hp : p ) (hp' : p 0) :
              theorem MeasureTheory.combine_estimates₀ {α : Type u_1} {α' : Type u_2} {E₁ : Type u_4} {E₂ : Type u_5} {m : MeasurableSpace α} {m' : MeasurableSpace α'} {p q p₀ q₀ p₁ q₁ : ENNReal} {C₀ C₁ : NNReal} {μ : Measure α} {ν : Measure α'} {f : αE₁} {t : ENNReal} {T : (αE₁)α'E₂} {A : NNReal} (hA : 0 < A) [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] [MeasurableSpace E₁] [BorelSpace E₁] [TopologicalSpace.PseudoMetrizableSpace E₁] [TopologicalSpace E₂] [ENormedAddCommMonoid E₂] {spf : ScaledPowerFunction} (hp₀ : p₀ Set.Ioc 0 q₀) (hp₁ : p₁ Set.Ioc 0 q₁) (ht : t Set.Ioo 0 1) (hp₀p₁ : p₀ < p₁) (hq₀q₁ : q₀ q₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) (hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹) (hf : MemLp f p μ) (hT : Subadditive_trunc T (↑A) f ν) (hC₀ : 0 < C₀) (hC₁ : 0 < C₁) (hF : eLpNorm f p μ Set.Ioo 0 ) (hspf : spf = ChoiceScale.spf_ch hq₀q₁ hC₀ hC₁ hF) (h₁T : HasWeakType T p₁ q₁ μ ν C₁) (h₀T : HasWeakType T p₀ q₀ μ ν C₀) (h₂T : PreservesAEStrongMeasurability T p) :
              ∫⁻ (x : α'), T f x‖ₑ ^ q.toReal ν ENNReal.ofReal ((2 * A) ^ q.toReal * q.toReal) * ((if q₁ < then 1 else 0) * ENNReal.ofReal |q.toReal - q₁.toReal|⁻¹ + (if q₀ < then 1 else 0) * ENNReal.ofReal |q.toReal - q₀.toReal|⁻¹) * C₀ ^ ((1 - t).toReal * q.toReal) * C₁ ^ (t.toReal * q.toReal) * eLpNorm f p μ ^ q.toReal
              theorem MeasureTheory.combine_estimates₁ {α : Type u_1} {α' : Type u_2} {E₁ : Type u_4} {E₂ : Type u_5} {m : MeasurableSpace α} {m' : MeasurableSpace α'} {p q p₀ q₀ p₁ q₁ : ENNReal} {C₀ C₁ : NNReal} {μ : Measure α} {ν : Measure α'} {f : αE₁} {t : ENNReal} {T : (αE₁)α'E₂} {A : NNReal} (hA : 0 < A) [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] [MeasurableSpace E₁] [BorelSpace E₁] [TopologicalSpace.PseudoMetrizableSpace E₁] [TopologicalSpace E₂] [ENormedAddCommMonoid E₂] {spf : ScaledPowerFunction} (hp₀ : p₀ Set.Ioc 0 q₀) (hp₁ : p₁ Set.Ioc 0 q₁) (ht : t Set.Ioo 0 1) (hp₀p₁ : p₀ < p₁) (hq₀q₁ : q₀ q₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) (hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹) (hf : MemLp f p μ) (hT : Subadditive_trunc T (↑A) f ν) (h₁T : HasWeakType T p₁ q₁ μ ν C₁) (h₀T : HasWeakType T p₀ q₀ μ ν C₀) (h₂T : PreservesAEStrongMeasurability T p) (hC₀ : 0 < C₀) (hC₁ : 0 < C₁) (hF : eLpNorm f p μ Set.Ioo 0 ) (hspf : spf = ChoiceScale.spf_ch hq₀q₁ hC₀ hC₁ hF) :
              eLpNorm (T f) q ν ENNReal.ofReal (2 * A) * q ^ q⁻¹.toReal * ((if q₁ < then 1 else 0) * ENNReal.ofReal |q.toReal - q₁.toReal|⁻¹ + (if q₀ < then 1 else 0) * ENNReal.ofReal |q.toReal - q₀.toReal|⁻¹) ^ q⁻¹.toReal * C₀ ^ (1 - t).toReal * C₁ ^ t.toReal * eLpNorm f p μ
              theorem MeasureTheory.simplify_factor₃ {α : Type u_1} {E₁ : Type u_4} {m : MeasurableSpace α} {p p₀ q₀ p₁ : ENNReal} {C₀ : NNReal} {μ : Measure α} {f : αE₁} {t : ENNReal} [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] (hp₀ : 0 < p₀) (hp₀' : p₀ ) (ht : t Set.Ioo 0 1) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) (hp₀p₁ : p₀ = p₁) :
              C₀ ^ q₀.toReal * (eLpNorm f p μ ^ p.toReal) ^ (q₀.toReal / p₀.toReal) = (C₀ * eLpNorm f p μ) ^ q₀.toReal
              theorem MeasureTheory.simplify_factor_aux₄ {α : Type u_1} {E₁ : Type u_4} {m : MeasurableSpace α} {p q p₀ q₀ p₁ : ENNReal} {C₀ C₁ : NNReal} {μ : Measure α} {f : αE₁} {t : ENNReal} [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] (hq₀' : q₀ ) (hp₀ : p₀ Set.Ioc 0 q₀) (ht : t Set.Ioo 0 1) (hp₀p₁ : p₀ = p₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) (hF : eLpNorm f p μ Set.Ioo 0 ) :
              C₀ ^ ((1 - t).toReal * q.toReal) * (eLpNorm f p μ ^ p.toReal) ^ ((1 - t).toReal * p₀⁻¹.toReal * q.toReal) * C₁ ^ (t.toReal * q.toReal) * (eLpNorm f p μ ^ p.toReal) ^ (t.toReal * p₁⁻¹.toReal * q.toReal) = C₀ ^ ((1 - t).toReal * q.toReal) * C₁ ^ (t.toReal * q.toReal) * eLpNorm f p μ ^ q.toReal
              theorem MeasureTheory.simplify_factor₄ {α : Type u_1} {E₁ : Type u_4} {m : MeasurableSpace α} {p q p₀ q₀ p₁ q₁ : ENNReal} {C₀ C₁ : NNReal} {μ : Measure α} {f : αE₁} {t D : ENNReal} [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] (hq₀' : q₀ ) (hp₀ : p₀ Set.Ioc 0 q₀) (hp₁ : p₁ Set.Ioc 0 q₁) (ht : t Set.Ioo 0 1) (hp₀p₁ : p₀ = p₁) (hq₀q₁ : q₀ q₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) (hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹) (hC₀ : 0 < C₀) (hC₁ : 0 < C₁) (hF : eLpNorm f p μ Set.Ioo 0 ) (hD : D = ChoiceScale.d) :
              (C₀ * eLpNorm f p μ) ^ q₀.toReal * D ^ (q.toReal - q₀.toReal) = C₀ ^ ((1 - t).toReal * q.toReal) * C₁ ^ (t.toReal * q.toReal) * eLpNorm f p μ ^ q.toReal
              theorem MeasureTheory.simplify_factor₅ {α : Type u_1} {E₁ : Type u_4} {m : MeasurableSpace α} {p q p₀ q₀ p₁ q₁ : ENNReal} {C₀ C₁ : NNReal} {μ : Measure α} {f : αE₁} {t D : ENNReal} [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] (hq₁' : q₁ ) (hp₀ : p₀ Set.Ioc 0 q₀) (hp₁ : p₁ Set.Ioc 0 q₁) (ht : t Set.Ioo 0 1) (hp₀p₁ : p₀ = p₁) (hq₀q₁ : q₀ q₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) (hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹) (hC₀ : 0 < C₀) (hC₁ : 0 < C₁) (hF : eLpNorm f p μ Set.Ioo 0 ) (hD : D = ChoiceScale.d) :
              (C₁ * eLpNorm f p μ) ^ q₁.toReal * D ^ (q.toReal - q₁.toReal) = C₀ ^ ((1 - t).toReal * q.toReal) * C₁ ^ (t.toReal * q.toReal) * eLpNorm f p μ ^ q.toReal
              theorem MeasureTheory.exists_hasStrongType_real_interpolation_aux₀ {α : Type u_1} {α' : Type u_2} {E₁ : Type u_4} {E₂ : Type u_5} {m : MeasurableSpace α} {m' : MeasurableSpace α'} {μ : Measure α} {ν : Measure α'} {f : αE₁} {t : ENNReal} {T : (αE₁)α'E₂} {p₀ p₁ q₀ q₁ p q : ENNReal} [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] [TopologicalSpace E₂] [ENormedAddCommMonoid E₂] (hp₀ : p₀ Set.Ioc 0 q₀) (hp₁ : p₁ Set.Ioc 0 q₁) (ht : t Set.Ioo 0 1) {C₀ : NNReal} (hp : p⁻¹ = (1 - t) / p₀ + t / p₁) (hq : q⁻¹ = (1 - t) / q₀ + t / q₁) (h₀T : HasWeakType T p₀ q₀ μ ν C₀) (h₂T : PreservesAEStrongMeasurability T p) (hf : MemLp f p μ) (hF : eLpNorm f p μ = 0) :
              eLpNorm (T f) q ν = 0

              The trivial case for the estimate in the real interpolation theorem when the function Lp norm of f vanishes.

              theorem MeasureTheory.exists_hasStrongType_real_interpolation_aux {α : Type u_1} {α' : Type u_2} {E₁ : Type u_4} {E₂ : Type u_5} {m : MeasurableSpace α} {m' : MeasurableSpace α'} {μ : Measure α} {ν : Measure α'} {f : αE₁} {t : ENNReal} {T : (αE₁)α'E₂} {p₀ p₁ q₀ q₁ p q : ENNReal} {A : NNReal} [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] [MeasurableSpace E₁] [BorelSpace E₁] [TopologicalSpace.PseudoMetrizableSpace E₁] [TopologicalSpace E₂] [ENormedAddCommMonoid E₂] (hA : 0 < A) (hp₀ : p₀ Set.Ioc 0 q₀) (hp₁ : p₁ Set.Ioc 0 q₁) (hp₀p₁ : p₀ < p₁) (hq₀q₁ : q₀ q₁) {C₀ C₁ : NNReal} (ht : t Set.Ioo 0 1) (hC₀ : 0 < C₀) (hC₁ : 0 < C₁) (hp : p⁻¹ = (1 - t) / p₀ + t / p₁) (hq : q⁻¹ = (1 - t) / q₀ + t / q₁) (hT : Subadditive_trunc T (↑A) f ν) (h₀T : HasWeakType T p₀ q₀ μ ν C₀) (h₁T : HasWeakType T p₁ q₁ μ ν C₁) (h₂T : PreservesAEStrongMeasurability T p) (hf : MemLp f p μ) :
              eLpNorm (T f) q ν ENNReal.ofReal (2 * A) * q ^ q⁻¹.toReal * ((if q₁ < then 1 else 0) * ENNReal.ofReal |q.toReal - q₁.toReal|⁻¹ + (if q₀ < then 1 else 0) * ENNReal.ofReal |q.toReal - q₀.toReal|⁻¹) ^ q⁻¹.toReal * C₀ ^ (1 - t).toReal * C₁ ^ t.toReal * eLpNorm f p μ

              The estimate for the real interpolation theorem in case p₀ < p₁.

              theorem MeasureTheory.exists_hasStrongType_real_interpolation_aux₁ {α : Type u_1} {E₁ : Type u_4} {m : MeasurableSpace α} {p q p₀ q₀ p₁ q₁ : ENNReal} {μ : Measure α} {t : ENNReal} {f : αE₁} [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] (hp₀ : p₀ Set.Ioc 0 q₀) (hp₁ : p₁ Set.Ioc 0 q₁) (hp₀p₁ : p₀ = p₁) (hq₀q₁ : q₀ < q₁) {C₀ C₁ : NNReal} (ht : t Set.Ioo 0 1) (hC₀ : 0 < C₀) (hC₁ : 0 < C₁) (hp : p⁻¹ = (1 - t) / p₀ + t / p₁) (hq : q⁻¹ = (1 - t) / q₀ + t / q₁) (hF : eLpNorm f p μ Set.Ioo 0 ) :
              (ENNReal.ofReal q.toReal * ((((C₀ * eLpNorm f p μ) ^ q₀.toReal * ∫⁻ (t : ) in Set.Ioo 0 ChoiceScale.d.toReal, ENNReal.ofReal (t ^ (q.toReal - q₀.toReal - 1))) * if q₀ = then 0 else 1) + ((C₁ * eLpNorm f p μ) ^ q₁.toReal * ∫⁻ (t : ) in Set.Ici ChoiceScale.d.toReal, ENNReal.ofReal (t ^ (q.toReal - q₁.toReal - 1))) * if q₁ = then 0 else 1)) ^ q.toReal⁻¹ = q ^ q.toReal⁻¹ * ((ENNReal.ofReal |q.toReal - q₀.toReal|⁻¹ * if q₀ = then 0 else 1) + ENNReal.ofReal |q.toReal - q₁.toReal|⁻¹ * if q₁ = then 0 else 1) ^ q.toReal⁻¹ * C₀ ^ (1 - t).toReal * C₁ ^ t.toReal * eLpNorm f p μ
              theorem MeasureTheory.exists_hasStrongType_real_interpolation_aux₂ {α : Type u_1} {α' : Type u_2} {E₁ : Type u_4} {E₂ : Type u_5} {m : MeasurableSpace α} {m' : MeasurableSpace α'} {p q p₀ q₀ p₁ q₁ : ENNReal} {μ : Measure α} {ν : Measure α'} {t : ENNReal} {T : (αE₁)α'E₂} {f : αE₁} [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] [TopologicalSpace E₂] [ENormedAddCommMonoid E₂] (hp₀ : p₀ Set.Ioc 0 q₀) (hp₁ : p₁ Set.Ioc 0 q₁) (hp₀p₁ : p₀ = p₁) (hq₀q₁ : q₀ < q₁) {C₀ C₁ : NNReal} (ht : t Set.Ioo 0 1) (hC₀ : 0 < C₀) (hC₁ : 0 < C₁) (hp : p⁻¹ = (1 - t) / p₀ + t / p₁) (hq : q⁻¹ = (1 - t) / q₀ + t / q₁) (h₀T : HasWeakType T p₀ q₀ μ ν C₀) (h₁T : HasWeakType T p₁ q₁ μ ν C₁) (h₂T : PreservesAEStrongMeasurability T p) (hf : MemLp f p μ) :
              eLpNorm (T f) q ν q ^ q.toReal⁻¹ * ((ENNReal.ofReal |q.toReal - q₀.toReal|⁻¹ * if q₀ = then 0 else 1) + ENNReal.ofReal |q.toReal - q₁.toReal|⁻¹ * if q₁ = then 0 else 1) ^ q.toReal⁻¹ * C₀ ^ (1 - t).toReal * C₁ ^ t.toReal * eLpNorm f p μ

              The main estimate in the real interpolation theorem for p₀ = p₁, before taking roots, for the case q₀ < q₁.

              theorem MeasureTheory.exists_hasStrongType_real_interpolation_aux₃ {α : Type u_1} {α' : Type u_2} {E₁ : Type u_4} {E₂ : Type u_5} {m : MeasurableSpace α} {m' : MeasurableSpace α'} {μ : Measure α} {ν : Measure α'} {f : αE₁} {t : ENNReal} {T : (αE₁)α'E₂} {p₀ p₁ q₀ q₁ p q : ENNReal} [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] [TopologicalSpace E₂] [ENormedAddCommMonoid E₂] (hp₀ : p₀ Set.Ioc 0 q₀) (hp₁ : p₁ Set.Ioc 0 q₁) (hp₀p₁ : p₀ = p₁) (hq₀q₁ : q₀ q₁) {C₀ C₁ : NNReal} (ht : t Set.Ioo 0 1) (hC₀ : 0 < C₀) (hC₁ : 0 < C₁) (hp : p⁻¹ = (1 - t) / p₀ + t / p₁) (hq : q⁻¹ = (1 - t) / q₀ + t / q₁) (h₀T : HasWeakType T p₀ q₀ μ ν C₀) (h₁T : HasWeakType T p₁ q₁ μ ν C₁) (h₂T : PreservesAEStrongMeasurability T p) (hf : MemLp f p μ) :
              eLpNorm (T f) q ν q ^ q.toReal⁻¹ * ((ENNReal.ofReal |q.toReal - q₀.toReal|⁻¹ * if q₀ = then 0 else 1) + ENNReal.ofReal |q.toReal - q₁.toReal|⁻¹ * if q₁ = then 0 else 1) ^ q.toReal⁻¹ * C₀ ^ (1 - t).toReal * C₁ ^ t.toReal * eLpNorm f p μ

              The main estimate for the real interpolation theorem for p₀ = p₁, requiring q₀ ≠ q₁, before taking roots.

              theorem MeasureTheory.exists_hasStrongType_real_interpolation_aux₄ {α : Type u_1} {α' : Type u_2} {E₁ : Type u_4} {E₂ : Type u_5} {m : MeasurableSpace α} {m' : MeasurableSpace α'} {μ : Measure α} {ν : Measure α'} {f : αE₁} {t : ENNReal} {T : (αE₁)α'E₂} {p₀ p₁ q₀ q₁ p q : ENNReal} {A : NNReal} (hA : 0 < A) [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] [MeasurableSpace E₁] [BorelSpace E₁] [TopologicalSpace.PseudoMetrizableSpace E₁] [TopologicalSpace E₂] [ENormedAddCommMonoid E₂] (hp₀ : p₀ Set.Ioc 0 q₀) (hp₁ : p₁ Set.Ioc 0 q₁) (hq₀q₁ : q₀ q₁) {C₀ C₁ : NNReal} (ht : t Set.Ioo 0 1) (hC₀ : 0 < C₀) (hC₁ : 0 < C₁) (hp : p⁻¹ = (1 - t) / p₀ + t / p₁) (hq : q⁻¹ = (1 - t) / q₀ + t / q₁) (hT : Subadditive_trunc T (↑A) f ν) (h₀T : HasWeakType T p₀ q₀ μ ν C₀) (h₁T : HasWeakType T p₁ q₁ μ ν C₁) (h₂T : PreservesAEStrongMeasurability T p) (hf : MemLp f p μ) :
              eLpNorm (T f) q ν (if p₀ = p₁ then 1 else ENNReal.ofReal (2 * A)) * q ^ q⁻¹.toReal * ((if q₁ < then 1 else 0) * ENNReal.ofReal |q.toReal - q₁.toReal|⁻¹ + (if q₀ < then 1 else 0) * ENNReal.ofReal |q.toReal - q₀.toReal|⁻¹) ^ q⁻¹.toReal * C₀ ^ (1 - t).toReal * C₁ ^ t.toReal * eLpNorm f p μ

              The main estimate for the real interpolation theorem, before taking roots, combining the cases p₀ ≠ p₁ and p₀ = p₁.

              def MeasureTheory.C_realInterpolation_ENNReal (p₀ p₁ q₀ q₁ q : ENNReal) (C₀ C₁ A : NNReal) (t : ENNReal) :

              The definition of the constant in the real interpolation theorem, when viewed as an element of ℝ≥0∞.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                theorem MeasureTheory.C_realInterpolation_ENNReal_ne_top {t p₀ p₁ q₀ q₁ q : ENNReal} {A : NNReal} (hp₀ : p₀ Set.Ioc 0 q₀) (hp₁ : p₁ Set.Ioc 0 q₁) (hq₀q₁ : q₀ q₁) {C₀ C₁ : NNReal} (ht : t Set.Ioo 0 1) (hC₀ : 0 < C₀) (hC₁ : 0 < C₁) (hq : q⁻¹ = (1 - t) / q₀ + t / q₁) :
                C_realInterpolation_ENNReal p₀ p₁ q₀ q₁ q C₀ C₁ A t
                theorem MeasureTheory.C_realInterpolation_ENNReal_pos {t p₀ p₁ q₀ q₁ q : ENNReal} {A : NNReal} (hA : 0 < A) (hp₀ : p₀ Set.Ioc 0 q₀) (hp₁ : p₁ Set.Ioc 0 q₁) (hq₀q₁ : q₀ q₁) {C₀ C₁ : NNReal} (ht : t Set.Ioo 0 1) (hC₀ : 0 < C₀) (hC₁ : 0 < C₁) (hq : q⁻¹ = (1 - t) / q₀ + t / q₁) :
                0 < C_realInterpolation_ENNReal p₀ p₁ q₀ q₁ q C₀ C₁ A t
                def MeasureTheory.C_realInterpolation (p₀ p₁ q₀ q₁ q : ENNReal) (C₀ C₁ A : NNReal) (t : ENNReal) :

                The constant occurring in the real interpolation theorem

                Equations
                Instances For
                  theorem MeasureTheory.C_realInterpolation_pos {t p₀ p₁ q₀ q₁ q : ENNReal} {A : NNReal} (hA : 0 < A) (hp₀ : p₀ Set.Ioc 0 q₀) (hp₁ : p₁ Set.Ioc 0 q₁) (hq₀q₁ : q₀ q₁) {C₀ C₁ : NNReal} (ht : t Set.Ioo 0 1) (hC₀ : 0 < C₀) (hC₁ : 0 < C₁) (hq : q⁻¹ = (1 - t) / q₀ + t / q₁) :
                  0 < C_realInterpolation p₀ p₁ q₀ q₁ q C₀ C₁ A t
                  theorem MeasureTheory.coe_C_realInterpolation {t p₀ p₁ q₀ q₁ q : ENNReal} {A : NNReal} (hp₀ : p₀ Set.Ioc 0 q₀) (hp₁ : p₁ Set.Ioc 0 q₁) (hq₀q₁ : q₀ q₁) {C₀ C₁ : NNReal} (ht : t Set.Ioo 0 1) (hC₀ : 0 < C₀) (hC₁ : 0 < C₁) (hq : q⁻¹ = (1 - t) / q₀ + t / q₁) :
                  (C_realInterpolation p₀ p₁ q₀ q₁ q C₀ C₁ A t) = C_realInterpolation_ENNReal p₀ p₁ q₀ q₁ q C₀ C₁ A t
                  theorem MeasureTheory.Subadditive_trunc_from_SubadditiveOn_Lp₀p₁ {α : Type u_1} {α' : Type u_2} {E₁ : Type u_4} {E₂ : Type u_5} {m : MeasurableSpace α} {m' : MeasurableSpace α'} {μ : Measure α} {ν : Measure α'} {f : αE₁} {t : ENNReal} {T : (αE₁)α'E₂} {p₀ p₁ p : ENNReal} [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] [TopologicalSpace E₂] [ENormedAddCommMonoid E₂] (hp₀ : 0 < p₀) (hp₁ : 0 < p₁) {A : NNReal} (hA : 1 A) (ht : t Set.Ioo 0 1) (hp : p⁻¹ = (1 - t) / p₀ + t / p₁) (hT : AESubadditiveOn T (fun (f : αE₁) => MemLp f p₀ μ MemLp f p₁ μ) (↑A) ν) (hf : MemLp f p μ) :
                  Subadditive_trunc T (↑A) f ν
                  theorem MeasureTheory.exists_hasStrongType_real_interpolation {α : Type u_1} {α' : Type u_2} {E₁ : Type u_4} {E₂ : Type u_5} {m : MeasurableSpace α} {m' : MeasurableSpace α'} {μ : Measure α} {ν : Measure α'} {t : ENNReal} {T : (αE₁)α'E₂} {p₀ p₁ q₀ q₁ p q : ENNReal} [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] [MeasurableSpace E₁] [BorelSpace E₁] [TopologicalSpace.PseudoMetrizableSpace E₁] [TopologicalSpace E₂] [ENormedAddCommMonoid E₂] (hp₀ : p₀ Set.Ioc 0 q₀) (hp₁ : p₁ Set.Ioc 0 q₁) (hq₀q₁ : q₀ q₁) {C₀ C₁ A : NNReal} (hA : 1 A) (ht : t Set.Ioo 0 1) (hC₀ : 0 < C₀) (hC₁ : 0 < C₁) (hp : p⁻¹ = (1 - t) / p₀ + t / p₁) (hq : q⁻¹ = (1 - t) / q₀ + t / q₁) (hmT : ∀ (f : αE₁), MemLp f p μAEStronglyMeasurable (T f) ν) (hT : AESubadditiveOn T (fun (f : αE₁) => MemLp f p₀ μ MemLp f p₁ μ) (↑A) ν) (h₀T : HasWeakType T p₀ q₀ μ ν C₀) (h₁T : HasWeakType T p₁ q₁ μ ν C₁) :
                  HasStrongType T p q μ ν (C_realInterpolation p₀ p₁ q₀ q₁ q C₀ C₁ A t)

                  Marcinkiewicz real interpolation theorem