Documentation

Carleson.ToMathlib.RealInterpolation.Main

The Marcinkiewisz real interpolation theorem #

This file contains a proof of the Marcinkiewisz real interpolation theorem. The proof roughly follows Folland, Real Analysis. Modern Techniques and Their Applications, section 6.4, theorem 6.28, but a different truncation is used, and some estimates instead follow the technique as e.g. described in [Duoandikoetxea, Fourier Analysis, 2000].

This file has the definitions for the main proof, and the final proof of the theorem. A few other files contain the necessary pre-requisites:

Upstreaming status: the result is highly desirable; the ideal proof strategy is not yet clear. It may be nicer to generalise this to Lorentz spaces first, and then upstream the proof there. (Useful ingredients for this proof also belong into mathlib.) Prioritise other files first (e.g., about weak type or the prerequisites files).

The real interpolation theorem #

Definitions #

def MeasureTheory.Subadditive {α : Type u_1} {α' : Type u_2} {ε : Type u_3} {ε₁ : Type u_8} [TopologicalSpace ε₁] [ESeminormedAddMonoid ε₁] [ENorm ε] (T : (αε₁)α'ε) :
Equations
Instances For
    def MeasureTheory.Subadditive_trunc {α : Type u_1} {α' : Type u_2} {ε : Type u_3} {m' : MeasurableSpace α'} {ε₁ : Type u_8} [TopologicalSpace ε₁] [ESeminormedAddMonoid ε₁] [ENorm ε] (T : (αε₁)α'ε) (A : ENNReal) (f : αε₁) (ν : Measure α') :
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      def MeasureTheory.AESubadditiveOn {α : Type u_1} {α' : Type u_2} {ε : Type u_3} {m' : MeasurableSpace α'} {ε₁ : Type u_8} [TopologicalSpace ε₁] [ESeminormedAddMonoid ε₁] [ENorm ε] (T : (αε₁)α'ε) (P : (αε₁)Prop) (A : ENNReal) (ν : Measure α') :

      The operator is subadditive on functions satisfying P with constant A (this is almost vacuous if A = ⊤).

      Equations
      Instances For
        theorem MeasureTheory.AESubadditiveOn.antitone {α : Type u_1} {α' : Type u_2} {ε : Type u_3} {m' : MeasurableSpace α'} {ε₁ : Type u_8} [TopologicalSpace ε₁] [ESeminormedAddMonoid ε₁] [TopologicalSpace ε] [ESeminormedAddMonoid ε] {ν : Measure α'} {T : (αε₁)α'ε} {P P' : (αε₁)Prop} (h : ∀ {u : αε₁}, P uP' u) {A : ENNReal} (sa : AESubadditiveOn T P' A ν) :
        theorem MeasureTheory.AESubadditiveOn.zero {α : Type u_1} {α' : Type u_2} {m' : MeasurableSpace α'} {ε₁ : Type u_8} {ε₂ : Type u_9} [TopologicalSpace ε₁] [ESeminormedAddMonoid ε₁] [TopologicalSpace ε₂] [ESeminormedAddMonoid ε₂] {ν : Measure α'} {T : (αε₁)α'ε₂} {P : (αε₁)Prop} (hP : ∀ {f g : αε₁}, P fP gP (f + g)) (A : ENNReal) (h : ∀ (u : αε₁), P uT u =ᶠ[ae ν] 0) :
        theorem MeasureTheory.AESubadditiveOn.forall_le {α : Type u_1} {α' : Type u_2} {ε : Type u_3} {m' : MeasurableSpace α'} {ε₁ : Type u_8} [TopologicalSpace ε₁] [ESeminormedAddMonoid ε₁] [TopologicalSpace ε] [ESeminormedAddMonoid ε] {ν : Measure α'} {ι : Type u_10} {𝓑 : Set ι} (h𝓑 : 𝓑.Countable) {T : ι(αε₁)α'ε} {P : (αε₁)Prop} {A : ENNReal} (h : i𝓑, AESubadditiveOn (T i) P A ν) {f g : αε₁} (hf : P f) (hg : P g) :
        ∀ᵐ (x : α') ν, i𝓑, T i (f + g) x‖ₑ A * (T i f x‖ₑ + T i g x‖ₑ)
        theorem MeasureTheory.AESubadditiveOn.biSup {α : Type u_1} {α' : Type u_2} {m' : MeasurableSpace α'} {ε₁ : Type u_8} [TopologicalSpace ε₁] [ESeminormedAddMonoid ε₁] {ν : Measure α'} {ι : Type u_10} {𝓑 : Set ι} (h𝓑 : 𝓑.Countable) {T : ι(αε₁)α'ENNReal} {P : (αε₁)Prop} (hT : ∀ (u : αε₁), P u∀ᵐ (x : α') ν, i𝓑, T i u x ) (hP : ∀ {f g : αε₁}, P fP gP (f + g)) {A : ENNReal} (h : i𝓑, AESubadditiveOn (T i) P A ν) :
        AESubadditiveOn (fun (u : αε₁) (x : α') => i𝓑, T i u x) P A ν
        theorem MeasureTheory.AESubadditiveOn.indicator {α : Type u_1} {α' : Type u_2} {ε : Type u_3} {m' : MeasurableSpace α'} {ε₁ : Type u_8} [TopologicalSpace ε₁] [ESeminormedAddMonoid ε₁] [TopologicalSpace ε] [ESeminormedAddMonoid ε] {ν : Measure α'} {T : (αε₁)α'ε} {P : (αε₁)Prop} {A : ENNReal} (sa : AESubadditiveOn T P A ν) (S : Set α') :
        AESubadditiveOn (fun (u : αε₁) (x : α') => S.indicator (fun (y : α') => T u y) x) P A ν
        theorem MeasureTheory.AESubadditiveOn.const {α : Type u_1} {α' : Type u_2} {ε : Type u_3} {m' : MeasurableSpace α'} {ε₁ : Type u_8} [TopologicalSpace ε₁] [ESeminormedAddMonoid ε₁] [TopologicalSpace ε] [ESeminormedAddMonoid ε] {ν : Measure α'} (T : (αε₁)ε) (P : (αε₁)Prop) (h_add : ∀ {f g : αε₁}, P fP gT (f + g)‖ₑ T f‖ₑ + T g‖ₑ) :
        AESubadditiveOn (fun (u : αε₁) (x : α') => T u) P 1 ν
        def MeasureTheory.AESublinearOn {α : Type u_1} {α' : Type u_2} {ε : Type u_3} {m' : MeasurableSpace α'} [TopologicalSpace ε] [ENormedSpace ε] {ε₁ : Type u_10} [TopologicalSpace ε₁] [ENormedSpace ε₁] (T : (αε₁)α'ε) (P : (αε₁)Prop) (A : ENNReal) (ν : Measure α') :

        The operator is sublinear on functions satisfying P with constant A.

        Equations
        Instances For
          theorem MeasureTheory.AESublinearOn.antitone {α : Type u_1} {α' : Type u_2} {ε : Type u_3} {m' : MeasurableSpace α'} [TopologicalSpace ε] [ENormedSpace ε] {ε₁ : Type u_10} [TopologicalSpace ε₁] [ENormedSpace ε₁] {ν : Measure α'} {T : (αε₁)α'ε} {P P' : (αε₁)Prop} (h : ∀ {u : αε₁}, P uP' u) {A : ENNReal} (sl : AESublinearOn T P' A ν) :
          AESublinearOn T P A ν
          theorem MeasureTheory.AESublinearOn.biSup {α : Type u_1} {α' : Type u_2} {m' : MeasurableSpace α'} {ε₁ : Type u_10} [TopologicalSpace ε₁] [ENormedSpace ε₁] {ν : Measure α'} {ι : Type u_12} {𝓑 : Set ι} (h𝓑 : 𝓑.Countable) {T : ι(αε₁)α'ENNReal} {P : (αε₁)Prop} (hT : ∀ (u : αε₁), P u∀ᵐ (x : α') ν, i𝓑, T i u x ) (h_add : ∀ {f g : αε₁}, P fP gP (f + g)) (h_smul : ∀ {f : αε₁} {c : NNReal}, P fP (c f)) {A : ENNReal} (h : i𝓑, AESublinearOn (T i) P A ν) :
          AESublinearOn (fun (u : αε₁) (x : α') => i𝓑, T i u x) P A ν
          theorem MeasureTheory.AESublinearOn.biSup2 {α : Type u_1} {α' : Type u_2} {m' : MeasurableSpace α'} {ε₁ : Type u_10} [TopologicalSpace ε₁] [ENormedSpace ε₁] {ν : Measure α'} {ι : Type u_12} {𝓑 : Set ι} (h𝓑 : 𝓑.Countable) {T : ι(αε₁)α'ENNReal} {P Q : (αε₁)Prop} (hPT : ∀ (u : αε₁), P u∀ᵐ (x : α') ν, i𝓑, T i u x ) (hQT : ∀ (u : αε₁), Q u∀ᵐ (x : α') ν, i𝓑, T i u x ) (P0 : P 0) (Q0 : Q 0) (haP : ∀ {f g : αε₁}, P fP gP (f + g)) (haQ : ∀ {f g : αε₁}, Q fQ gQ (f + g)) (hsP : ∀ {f : αε₁} {c : NNReal}, P fP (c f)) (hsQ : ∀ {f : αε₁} {c : NNReal}, Q fQ (c f)) {A : NNReal} (hAP : i𝓑, AESublinearOn (T i) (fun (g : αε₁) => g {f : αε₁ | P f} + {f : αε₁ | Q f}) (↑A) ν) :
          AESublinearOn (fun (u : αε₁) (x : α') => i𝓑, T i u x) (fun (f : αε₁) => P f Q f) (↑A) ν
          theorem MeasureTheory.AESublinearOn.indicator {α : Type u_1} {α' : Type u_2} {ε : Type u_3} {m' : MeasurableSpace α'} [TopologicalSpace ε] [ENormedSpace ε] {ε₁ : Type u_10} [TopologicalSpace ε₁] [ENormedSpace ε₁] {ν : Measure α'} {T : (αε₁)α'ε} {P : (αε₁)Prop} {A : ENNReal} (S : Set α') (sl : AESublinearOn T P A ν) :
          AESublinearOn (fun (u : αε₁) (x : α') => S.indicator (fun (y : α') => T u y) x) P A ν
          theorem MeasureTheory.AESublinearOn.const {α : Type u_1} {α' : Type u_2} {ε : Type u_3} {m' : MeasurableSpace α'} [TopologicalSpace ε] [ENormedSpace ε] {ε₁ : Type u_10} [TopologicalSpace ε₁] [ENormedSpace ε₁] {ν : Measure α'} (T : (αε₁)ε) (P : (αε₁)Prop) (h_add : ∀ {f g : αε₁}, P fP gT (f + g)‖ₑ T f‖ₑ + T g‖ₑ) (h_smul : ∀ (f : αε₁) {c : NNReal}, P fT (c f) = c T f) :
          AESublinearOn (fun (u : αε₁) (x : α') => T u) P 1 ν
          theorem MeasureTheory.AESublinearOn.toReal {α : Type u_1} {α' : Type u_2} {m' : MeasurableSpace α'} {ε₁ : Type u_10} [TopologicalSpace ε₁] [ENormedSpace ε₁] {ν : Measure α'} {T : (αε₁)α'ENNReal} {P : (αε₁)Prop} {A : ENNReal} (h : AESublinearOn T P A ν) (hP : ∀ (u : αε₁), P u∀ᵐ (x : α') ν, T u x ) :
          AESublinearOn (fun (x1 : αε₁) (x2 : α') => (T x1 x2).toReal) P A ν

          Proof of the real interpolation theorem #

          In this section the estimates are combined to finally give a proof of the
          real interpolation theorem.
          
          def MeasureTheory.PreservesAEStrongMeasurability {α : Type u_1} {α' : Type u_2} {m : MeasurableSpace α} {m' : MeasurableSpace α'} {μ : Measure α} {ν : Measure α'} {ε₁ : Type u_7} {ε₂ : Type u_8} [TopologicalSpace ε₁] [ESeminormedAddMonoid ε₁] [TopologicalSpace ε₂] (T : (αε₁)α'ε₂) (p : ENNReal) :

          Proposition that expresses that the map T map between function spaces preserves AE strong measurability on L^p.

          Equations
          Instances For
            theorem MeasureTheory.estimate_distribution_Subadditive_trunc {α : Type u_1} {α' : Type u_2} {m' : MeasurableSpace α'} {ν : Measure α'} {t : ENNReal} {ε₁ : Type u_7} {ε₂ : Type u_8} [TopologicalSpace ε₁] [ESeminormedAddMonoid ε₁] [TopologicalSpace ε₂] [ESeminormedAddMonoid ε₂] {f : αε₁} {T : (αε₁)α'ε₂} {a : ENNReal} (ha : 0 < a) {A : ENNReal} (h : Subadditive_trunc T A f ν) :
            distribution (T f) (2 * A * t) ν distribution (T (trunc f a)) t ν + distribution (T (truncCompl f a)) t ν
            theorem MeasureTheory.rewrite_norm_func {α' : Type u_2} {E : Type u_3} {m' : MeasurableSpace α'} {ν : Measure α'} {q : } {g : α'E} [TopologicalSpace E] [ESeminormedAddCommMonoid E] (hq : 0 < q) {A : NNReal} (hA : 0 < A) (hg : AEStronglyMeasurable g ν) :
            ∫⁻ (x : α'), g x‖ₑ ^ q ν = ENNReal.ofReal ((2 * A) ^ q * q) * ∫⁻ (s : ENNReal), distribution g (ENNReal.ofReal (2 * A) * s) ν * s ^ (q - 1)
            theorem MeasureTheory.estimate_norm_rpow_range_operator {α : Type u_1} {α' : Type u_2} {E₁ : Type u_4} {E₂ : Type u_5} {m' : MeasurableSpace α'} {ν : Measure α'} {T : (αE₁)α'E₂} {q : } {f : αE₁} [TopologicalSpace E₁] [ESeminormedAddCommMonoid E₁] [TopologicalSpace E₂] [ESeminormedAddCommMonoid E₂] (hq : 0 < q) (tc : StrictRangeToneCouple) {A : NNReal} (hA : 0 < A) (ht : Subadditive_trunc T (↑A) f ν) (hTf : AEStronglyMeasurable (T f) ν) :
            ∫⁻ (x : α'), T f x‖ₑ ^ q ν ENNReal.ofReal ((2 * A) ^ q * q) * ∫⁻ (s : ENNReal), distribution (T (trunc f (tc.ton s))) s ν * s ^ (q - 1) + distribution (T (truncCompl f (tc.ton s))) s ν * s ^ (q - 1)
            theorem MeasureTheory.ton_measurable_eLpNorm_trunc {α : Type u_1} {E₁ : Type u_4} {m : MeasurableSpace α} {p₁ : ENNReal} {μ : Measure α} {f : αE₁} [TopologicalSpace E₁] [ESeminormedAddCommMonoid E₁] (tc : ToneCouple) :
            Measurable fun (x : ENNReal) => eLpNorm (trunc f (tc.ton x)) p₁ μ
            theorem MeasureTheory.estimate_norm_rpow_range_operator' {α : Type u_1} {α' : Type u_2} {E₁ : Type u_4} {E₂ : Type u_5} {m : MeasurableSpace α} {m' : MeasurableSpace α'} {p q p₀ q₀ p₁ q₁ : ENNReal} {C₀ C₁ : NNReal} {μ : Measure α} {ν : Measure α'} {f : αE₁} {T : (αE₁)α'E₂} [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] [TopologicalSpace E₂] [ENormedAddCommMonoid E₂] (hp₀ : 0 < p₀) (hq₀ : 0 < q₀) (hq₁ : 0 < q₁) (hp₁p : p < p₁) (hp₀p : p₀ < p) (tc : StrictRangeToneCouple) (hq₀' : q₀ = s > 0, distribution (T (truncCompl f (tc.ton s))) s ν = 0) (hq₁' : q₁ = s > 0, distribution (T (trunc f (tc.ton s))) s ν = 0) (hf : MemLp f p μ) (hT₁ : HasWeakType T p₁ q₁ μ ν C₁) (hT₀ : HasWeakType T p₀ q₀ μ ν C₀) :
            ∫⁻ (s : ENNReal), distribution (T (trunc f (tc.ton s))) s ν * s ^ (q.toReal - 1) + distribution (T (truncCompl f (tc.ton s))) s ν * s ^ (q.toReal - 1) (if q₁ < then 1 else 0) * (C₁ ^ q₁.toReal * ∫⁻ (s : ENNReal), eLpNorm (trunc f (tc.ton s)) p₁ μ ^ q₁.toReal * s ^ (q.toReal - q₁.toReal - 1)) + (if q₀ < then 1 else 0) * (C₀ ^ q₀.toReal * ∫⁻ (s : ENNReal), eLpNorm (truncCompl f (tc.ton s)) p₀ μ ^ q₀.toReal * s ^ (q.toReal - q₀.toReal - 1))
            theorem MeasureTheory.simplify_factor_rw_aux₀ (a b c d e f : ENNReal) :
            a * b * c * d * e * f = a * c * e * (b * d * f)
            theorem MeasureTheory.simplify_factor_rw_aux₁ (a b c d e f : ENNReal) :
            a * b * c * d * e * f = c * (a * e) * (b * f * d)
            theorem MeasureTheory.simplify_factor₀ {α : Type u_1} {E₁ : Type u_4} {m : MeasurableSpace α} {p q p₀ q₀ p₁ q₁ : ENNReal} {C₀ C₁ : NNReal} {μ : Measure α} {f : αE₁} {t D : ENNReal} [TopologicalSpace E₁] [ESeminormedAddCommMonoid E₁] (hq₀' : q₀ ) (hp₀ : p₀ Set.Ioc 0 q₀) (hp₁ : p₁ Set.Ioc 0 q₁) (ht : t Set.Ioo 0 1) (hq₀q₁ : q₀ q₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) (hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹) (hC₀ : 0 < C₀) (hC₁ : 0 < C₁) (hF : eLpNorm f p μ Set.Ioo 0 ) (hD : D = ChoiceScale.d) :
            C₀ ^ q₀.toReal * (eLpNorm f p μ ^ p.toReal) ^ (q₀.toReal / p₀.toReal) * D ^ (q.toReal - q₀.toReal) = C₀ ^ ((1 - t).toReal * q.toReal) * C₁ ^ (t.toReal * q.toReal) * eLpNorm f p μ ^ q.toReal
            theorem MeasureTheory.simplify_factor₁ {α : Type u_1} {E₁ : Type u_4} {m : MeasurableSpace α} {p q p₀ q₀ p₁ q₁ : ENNReal} {C₀ C₁ : NNReal} {μ : Measure α} {f : αE₁} {t D : ENNReal} [TopologicalSpace E₁] [ESeminormedAddCommMonoid E₁] (hq₁' : q₁ ) (hp₀ : p₀ Set.Ioc 0 q₀) (hp₁ : p₁ Set.Ioc 0 q₁) (ht : t Set.Ioo 0 1) (hq₀q₁ : q₀ q₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) (hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹) (hC₀ : 0 < C₀) (hC₁ : 0 < C₁) (hF : eLpNorm f p μ Set.Ioo 0 ) (hD : D = ChoiceScale.d) :
            C₁ ^ q₁.toReal * (eLpNorm f p μ ^ p.toReal) ^ (q₁.toReal / p₁.toReal) * D ^ (q.toReal - q₁.toReal) = C₀ ^ ((1 - t).toReal * q.toReal) * C₁ ^ (t.toReal * q.toReal) * eLpNorm f p μ ^ q.toReal
            def MeasureTheory.finite_spanning_sets_from_lintegrable {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {g : αENNReal} (hg : AEMeasurable g μ) (hg_int : ∫⁻ (x : α), g x μ < ) :
            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              theorem MeasureTheory.support_sigma_finite_of_lintegrable {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {g : αENNReal} (hg : AEMeasurable g μ) (hg_int : ∫⁻ (x : α), g x μ < ) :
              theorem MeasureTheory.support_sigma_finite_from_MemLp {α : Type u_1} {E₁ : Type u_4} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {f : αE₁} [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] (hf : MemLp f p μ) (hp : p ) (hp' : p 0) :
              theorem MeasureTheory.combine_estimates₀ {α : Type u_1} {α' : Type u_2} {E₁ : Type u_4} {E₂ : Type u_5} {m : MeasurableSpace α} {m' : MeasurableSpace α'} {p q p₀ q₀ p₁ q₁ : ENNReal} {C₀ C₁ : NNReal} {μ : Measure α} {ν : Measure α'} {f : αE₁} {t : ENNReal} {T : (αE₁)α'E₂} {A : NNReal} (hA : 0 < A) [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] [MeasurableSpace E₁] [BorelSpace E₁] [TopologicalSpace.PseudoMetrizableSpace E₁] [TopologicalSpace E₂] [ENormedAddCommMonoid E₂] {spf : ScaledPowerFunction} (hp₀ : p₀ Set.Ioc 0 q₀) (hp₁ : p₁ Set.Ioc 0 q₁) (ht : t Set.Ioo 0 1) (hp₀p₁ : p₀ < p₁) (hq₀q₁ : q₀ q₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) (hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹) (hf : MemLp f p μ) (hT : Subadditive_trunc T (↑A) f ν) (hC₀ : 0 < C₀) (hC₁ : 0 < C₁) (hF : eLpNorm f p μ Set.Ioo 0 ) (hspf : spf = ChoiceScale.spf_ch hq₀q₁ hC₀ hC₁ hF) (h₁T : HasWeakType T p₁ q₁ μ ν C₁) (h₀T : HasWeakType T p₀ q₀ μ ν C₀) (h₂T : PreservesAEStrongMeasurability T p) :
              ∫⁻ (x : α'), T f x‖ₑ ^ q.toReal ν ENNReal.ofReal ((2 * A) ^ q.toReal * q.toReal) * ((if q₁ < then 1 else 0) * ENNReal.ofReal |q.toReal - q₁.toReal|⁻¹ + (if q₀ < then 1 else 0) * ENNReal.ofReal |q.toReal - q₀.toReal|⁻¹) * C₀ ^ ((1 - t).toReal * q.toReal) * C₁ ^ (t.toReal * q.toReal) * eLpNorm f p μ ^ q.toReal
              theorem MeasureTheory.combine_estimates₁ {α : Type u_1} {α' : Type u_2} {E₁ : Type u_4} {E₂ : Type u_5} {m : MeasurableSpace α} {m' : MeasurableSpace α'} {p q p₀ q₀ p₁ q₁ : ENNReal} {C₀ C₁ : NNReal} {μ : Measure α} {ν : Measure α'} {f : αE₁} {t : ENNReal} {T : (αE₁)α'E₂} {A : NNReal} (hA : 0 < A) [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] [MeasurableSpace E₁] [BorelSpace E₁] [TopologicalSpace.PseudoMetrizableSpace E₁] [TopologicalSpace E₂] [ENormedAddCommMonoid E₂] {spf : ScaledPowerFunction} (hp₀ : p₀ Set.Ioc 0 q₀) (hp₁ : p₁ Set.Ioc 0 q₁) (ht : t Set.Ioo 0 1) (hp₀p₁ : p₀ < p₁) (hq₀q₁ : q₀ q₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) (hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹) (hf : MemLp f p μ) (hT : Subadditive_trunc T (↑A) f ν) (h₁T : HasWeakType T p₁ q₁ μ ν C₁) (h₀T : HasWeakType T p₀ q₀ μ ν C₀) (h₂T : PreservesAEStrongMeasurability T p) (hC₀ : 0 < C₀) (hC₁ : 0 < C₁) (hF : eLpNorm f p μ Set.Ioo 0 ) (hspf : spf = ChoiceScale.spf_ch hq₀q₁ hC₀ hC₁ hF) :
              eLpNorm (T f) q ν ENNReal.ofReal (2 * A) * q ^ q⁻¹.toReal * ((if q₁ < then 1 else 0) * ENNReal.ofReal |q.toReal - q₁.toReal|⁻¹ + (if q₀ < then 1 else 0) * ENNReal.ofReal |q.toReal - q₀.toReal|⁻¹) ^ q⁻¹.toReal * C₀ ^ (1 - t).toReal * C₁ ^ t.toReal * eLpNorm f p μ
              theorem MeasureTheory.simplify_factor₃ {α : Type u_1} {E₁ : Type u_4} {m : MeasurableSpace α} {p p₀ q₀ p₁ : ENNReal} {C₀ : NNReal} {μ : Measure α} {f : αE₁} {t : ENNReal} [TopologicalSpace E₁] [ESeminormedAddCommMonoid E₁] (hp₀ : 0 < p₀) (hp₀' : p₀ ) (ht : t Set.Ioo 0 1) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) (hp₀p₁ : p₀ = p₁) :
              C₀ ^ q₀.toReal * (eLpNorm f p μ ^ p.toReal) ^ (q₀.toReal / p₀.toReal) = (C₀ * eLpNorm f p μ) ^ q₀.toReal
              theorem MeasureTheory.simplify_factor_aux₄ {α : Type u_1} {E₁ : Type u_4} {m : MeasurableSpace α} {p q p₀ q₀ p₁ : ENNReal} {C₀ C₁ : NNReal} {μ : Measure α} {f : αE₁} {t : ENNReal} [TopologicalSpace E₁] [ESeminormedAddCommMonoid E₁] (hq₀' : q₀ ) (hp₀ : p₀ Set.Ioc 0 q₀) (ht : t Set.Ioo 0 1) (hp₀p₁ : p₀ = p₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) (hF : eLpNorm f p μ Set.Ioo 0 ) :
              C₀ ^ ((1 - t).toReal * q.toReal) * (eLpNorm f p μ ^ p.toReal) ^ ((1 - t).toReal * p₀⁻¹.toReal * q.toReal) * C₁ ^ (t.toReal * q.toReal) * (eLpNorm f p μ ^ p.toReal) ^ (t.toReal * p₁⁻¹.toReal * q.toReal) = C₀ ^ ((1 - t).toReal * q.toReal) * C₁ ^ (t.toReal * q.toReal) * eLpNorm f p μ ^ q.toReal
              theorem MeasureTheory.simplify_factor₄ {α : Type u_1} {E₁ : Type u_4} {m : MeasurableSpace α} {p q p₀ q₀ p₁ q₁ : ENNReal} {C₀ C₁ : NNReal} {μ : Measure α} {f : αE₁} {t D : ENNReal} [TopologicalSpace E₁] [ESeminormedAddCommMonoid E₁] (hq₀' : q₀ ) (hp₀ : p₀ Set.Ioc 0 q₀) (hp₁ : p₁ Set.Ioc 0 q₁) (ht : t Set.Ioo 0 1) (hp₀p₁ : p₀ = p₁) (hq₀q₁ : q₀ q₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) (hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹) (hC₀ : 0 < C₀) (hC₁ : 0 < C₁) (hF : eLpNorm f p μ Set.Ioo 0 ) (hD : D = ChoiceScale.d) :
              (C₀ * eLpNorm f p μ) ^ q₀.toReal * D ^ (q.toReal - q₀.toReal) = C₀ ^ ((1 - t).toReal * q.toReal) * C₁ ^ (t.toReal * q.toReal) * eLpNorm f p μ ^ q.toReal
              theorem MeasureTheory.simplify_factor₅ {α : Type u_1} {E₁ : Type u_4} {m : MeasurableSpace α} {p q p₀ q₀ p₁ q₁ : ENNReal} {C₀ C₁ : NNReal} {μ : Measure α} {f : αE₁} {t D : ENNReal} [TopologicalSpace E₁] [ESeminormedAddCommMonoid E₁] (hq₁' : q₁ ) (hp₀ : p₀ Set.Ioc 0 q₀) (hp₁ : p₁ Set.Ioc 0 q₁) (ht : t Set.Ioo 0 1) (hp₀p₁ : p₀ = p₁) (hq₀q₁ : q₀ q₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) (hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹) (hC₀ : 0 < C₀) (hC₁ : 0 < C₁) (hF : eLpNorm f p μ Set.Ioo 0 ) (hD : D = ChoiceScale.d) :
              (C₁ * eLpNorm f p μ) ^ q₁.toReal * D ^ (q.toReal - q₁.toReal) = C₀ ^ ((1 - t).toReal * q.toReal) * C₁ ^ (t.toReal * q.toReal) * eLpNorm f p μ ^ q.toReal
              theorem MeasureTheory.exists_hasStrongType_real_interpolation_aux₀ {α : Type u_1} {α' : Type u_2} {E₁ : Type u_4} {E₂ : Type u_5} {m : MeasurableSpace α} {m' : MeasurableSpace α'} {μ : Measure α} {ν : Measure α'} {f : αE₁} {t : ENNReal} {T : (αE₁)α'E₂} {p₀ p₁ q₀ q₁ p q : ENNReal} [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] [TopologicalSpace E₂] [ENormedAddCommMonoid E₂] (hp₀ : p₀ Set.Ioc 0 q₀) (hp₁ : p₁ Set.Ioc 0 q₁) (ht : t Set.Ioo 0 1) {C₀ : NNReal} (hp : p⁻¹ = (1 - t) / p₀ + t / p₁) (hq : q⁻¹ = (1 - t) / q₀ + t / q₁) (h₀T : HasWeakType T p₀ q₀ μ ν C₀) (h₂T : PreservesAEStrongMeasurability T p) (hf : MemLp f p μ) (hF : eLpNorm f p μ = 0) :
              eLpNorm (T f) q ν = 0

              The trivial case for the estimate in the real interpolation theorem when the function Lp norm of f vanishes.

              theorem MeasureTheory.exists_hasStrongType_real_interpolation_aux {α : Type u_1} {α' : Type u_2} {E₁ : Type u_4} {E₂ : Type u_5} {m : MeasurableSpace α} {m' : MeasurableSpace α'} {μ : Measure α} {ν : Measure α'} {f : αE₁} {t : ENNReal} {T : (αE₁)α'E₂} {p₀ p₁ q₀ q₁ p q : ENNReal} {A : NNReal} [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] [MeasurableSpace E₁] [BorelSpace E₁] [TopologicalSpace.PseudoMetrizableSpace E₁] [TopologicalSpace E₂] [ENormedAddCommMonoid E₂] (hA : 0 < A) (hp₀ : p₀ Set.Ioc 0 q₀) (hp₁ : p₁ Set.Ioc 0 q₁) (hp₀p₁ : p₀ < p₁) (hq₀q₁ : q₀ q₁) {C₀ C₁ : NNReal} (ht : t Set.Ioo 0 1) (hC₀ : 0 < C₀) (hC₁ : 0 < C₁) (hp : p⁻¹ = (1 - t) / p₀ + t / p₁) (hq : q⁻¹ = (1 - t) / q₀ + t / q₁) (hT : Subadditive_trunc T (↑A) f ν) (h₀T : HasWeakType T p₀ q₀ μ ν C₀) (h₁T : HasWeakType T p₁ q₁ μ ν C₁) (h₂T : PreservesAEStrongMeasurability T p) (hf : MemLp f p μ) :
              eLpNorm (T f) q ν ENNReal.ofReal (2 * A) * q ^ q⁻¹.toReal * ((if q₁ < then 1 else 0) * ENNReal.ofReal |q.toReal - q₁.toReal|⁻¹ + (if q₀ < then 1 else 0) * ENNReal.ofReal |q.toReal - q₀.toReal|⁻¹) ^ q⁻¹.toReal * C₀ ^ (1 - t).toReal * C₁ ^ t.toReal * eLpNorm f p μ

              The estimate for the real interpolation theorem in case p₀ < p₁.

              theorem MeasureTheory.exists_hasStrongType_real_interpolation_aux₁ {α : Type u_1} {E₁ : Type u_4} {m : MeasurableSpace α} {p q p₀ q₀ p₁ q₁ : ENNReal} {μ : Measure α} {t : ENNReal} {f : αE₁} [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] (hp₀ : p₀ Set.Ioc 0 q₀) (hp₁ : p₁ Set.Ioc 0 q₁) (hp₀p₁ : p₀ = p₁) (hq₀q₁ : q₀ < q₁) {C₀ C₁ : NNReal} (ht : t Set.Ioo 0 1) (hC₀ : 0 < C₀) (hC₁ : 0 < C₁) (hp : p⁻¹ = (1 - t) / p₀ + t / p₁) (hq : q⁻¹ = (1 - t) / q₀ + t / q₁) (hF : eLpNorm f p μ Set.Ioo 0 ) :
              (ENNReal.ofReal q.toReal * ((((C₀ * eLpNorm f p μ) ^ q₀.toReal * ∫⁻ (t : ) in Set.Ioo 0 ChoiceScale.d.toReal, ENNReal.ofReal (t ^ (q.toReal - q₀.toReal - 1))) * if q₀ = then 0 else 1) + ((C₁ * eLpNorm f p μ) ^ q₁.toReal * ∫⁻ (t : ) in Set.Ici ChoiceScale.d.toReal, ENNReal.ofReal (t ^ (q.toReal - q₁.toReal - 1))) * if q₁ = then 0 else 1)) ^ q.toReal⁻¹ = q ^ q.toReal⁻¹ * ((ENNReal.ofReal |q.toReal - q₀.toReal|⁻¹ * if q₀ = then 0 else 1) + ENNReal.ofReal |q.toReal - q₁.toReal|⁻¹ * if q₁ = then 0 else 1) ^ q.toReal⁻¹ * C₀ ^ (1 - t).toReal * C₁ ^ t.toReal * eLpNorm f p μ
              theorem MeasureTheory.exists_hasStrongType_real_interpolation_aux₂ {α : Type u_1} {α' : Type u_2} {E₁ : Type u_4} {E₂ : Type u_5} {m : MeasurableSpace α} {m' : MeasurableSpace α'} {p q p₀ q₀ p₁ q₁ : ENNReal} {μ : Measure α} {ν : Measure α'} {t : ENNReal} {T : (αE₁)α'E₂} {f : αE₁} [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] [TopologicalSpace E₂] [ENormedAddCommMonoid E₂] (hp₀ : p₀ Set.Ioc 0 q₀) (hp₁ : p₁ Set.Ioc 0 q₁) (hp₀p₁ : p₀ = p₁) (hq₀q₁ : q₀ < q₁) {C₀ C₁ : NNReal} (ht : t Set.Ioo 0 1) (hC₀ : 0 < C₀) (hC₁ : 0 < C₁) (hp : p⁻¹ = (1 - t) / p₀ + t / p₁) (hq : q⁻¹ = (1 - t) / q₀ + t / q₁) (h₀T : HasWeakType T p₀ q₀ μ ν C₀) (h₁T : HasWeakType T p₁ q₁ μ ν C₁) (h₂T : PreservesAEStrongMeasurability T p) (hf : MemLp f p μ) :
              eLpNorm (T f) q ν q ^ q.toReal⁻¹ * ((ENNReal.ofReal |q.toReal - q₀.toReal|⁻¹ * if q₀ = then 0 else 1) + ENNReal.ofReal |q.toReal - q₁.toReal|⁻¹ * if q₁ = then 0 else 1) ^ q.toReal⁻¹ * C₀ ^ (1 - t).toReal * C₁ ^ t.toReal * eLpNorm f p μ

              The main estimate in the real interpolation theorem for p₀ = p₁, before taking roots, for the case q₀ < q₁.

              theorem MeasureTheory.exists_hasStrongType_real_interpolation_aux₃ {α : Type u_1} {α' : Type u_2} {E₁ : Type u_4} {E₂ : Type u_5} {m : MeasurableSpace α} {m' : MeasurableSpace α'} {μ : Measure α} {ν : Measure α'} {f : αE₁} {t : ENNReal} {T : (αE₁)α'E₂} {p₀ p₁ q₀ q₁ p q : ENNReal} [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] [TopologicalSpace E₂] [ENormedAddCommMonoid E₂] (hp₀ : p₀ Set.Ioc 0 q₀) (hp₁ : p₁ Set.Ioc 0 q₁) (hp₀p₁ : p₀ = p₁) (hq₀q₁ : q₀ q₁) {C₀ C₁ : NNReal} (ht : t Set.Ioo 0 1) (hC₀ : 0 < C₀) (hC₁ : 0 < C₁) (hp : p⁻¹ = (1 - t) / p₀ + t / p₁) (hq : q⁻¹ = (1 - t) / q₀ + t / q₁) (h₀T : HasWeakType T p₀ q₀ μ ν C₀) (h₁T : HasWeakType T p₁ q₁ μ ν C₁) (h₂T : PreservesAEStrongMeasurability T p) (hf : MemLp f p μ) :
              eLpNorm (T f) q ν q ^ q.toReal⁻¹ * ((ENNReal.ofReal |q.toReal - q₀.toReal|⁻¹ * if q₀ = then 0 else 1) + ENNReal.ofReal |q.toReal - q₁.toReal|⁻¹ * if q₁ = then 0 else 1) ^ q.toReal⁻¹ * C₀ ^ (1 - t).toReal * C₁ ^ t.toReal * eLpNorm f p μ

              The main estimate for the real interpolation theorem for p₀ = p₁, requiring q₀ ≠ q₁, before taking roots.

              theorem MeasureTheory.exists_hasStrongType_real_interpolation_aux₄ {α : Type u_1} {α' : Type u_2} {E₁ : Type u_4} {E₂ : Type u_5} {m : MeasurableSpace α} {m' : MeasurableSpace α'} {μ : Measure α} {ν : Measure α'} {f : αE₁} {t : ENNReal} {T : (αE₁)α'E₂} {p₀ p₁ q₀ q₁ p q : ENNReal} {A : NNReal} (hA : 0 < A) [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] [MeasurableSpace E₁] [BorelSpace E₁] [TopologicalSpace.PseudoMetrizableSpace E₁] [TopologicalSpace E₂] [ENormedAddCommMonoid E₂] (hp₀ : p₀ Set.Ioc 0 q₀) (hp₁ : p₁ Set.Ioc 0 q₁) (hq₀q₁ : q₀ q₁) {C₀ C₁ : NNReal} (ht : t Set.Ioo 0 1) (hC₀ : 0 < C₀) (hC₁ : 0 < C₁) (hp : p⁻¹ = (1 - t) / p₀ + t / p₁) (hq : q⁻¹ = (1 - t) / q₀ + t / q₁) (hT : Subadditive_trunc T (↑A) f ν) (h₀T : HasWeakType T p₀ q₀ μ ν C₀) (h₁T : HasWeakType T p₁ q₁ μ ν C₁) (h₂T : PreservesAEStrongMeasurability T p) (hf : MemLp f p μ) :
              eLpNorm (T f) q ν (if p₀ = p₁ then 1 else ENNReal.ofReal (2 * A)) * q ^ q⁻¹.toReal * ((if q₁ < then 1 else 0) * ENNReal.ofReal |q.toReal - q₁.toReal|⁻¹ + (if q₀ < then 1 else 0) * ENNReal.ofReal |q.toReal - q₀.toReal|⁻¹) ^ q⁻¹.toReal * C₀ ^ (1 - t).toReal * C₁ ^ t.toReal * eLpNorm f p μ

              The main estimate for the real interpolation theorem, before taking roots, combining the cases p₀ ≠ p₁ and p₀ = p₁.

              def MeasureTheory.C_realInterpolation_ENNReal (p₀ p₁ q₀ q₁ q : ENNReal) (C₀ C₁ A : NNReal) (t : ENNReal) :

              The definition of the constant in the real interpolation theorem, when viewed as an element of ℝ≥0∞.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                theorem MeasureTheory.C_realInterpolation_ENNReal_ne_top {t p₀ p₁ q₀ q₁ q : ENNReal} {A : NNReal} (hp₀ : p₀ Set.Ioc 0 q₀) (hp₁ : p₁ Set.Ioc 0 q₁) (hq₀q₁ : q₀ q₁) {C₀ C₁ : NNReal} (ht : t Set.Ioo 0 1) (hC₀ : 0 < C₀) (hC₁ : 0 < C₁) (hq : q⁻¹ = (1 - t) / q₀ + t / q₁) :
                C_realInterpolation_ENNReal p₀ p₁ q₀ q₁ q C₀ C₁ A t
                theorem MeasureTheory.C_realInterpolation_ENNReal_pos {t p₀ p₁ q₀ q₁ q : ENNReal} {A : NNReal} (hA : 0 < A) (hp₀ : p₀ Set.Ioc 0 q₀) (hp₁ : p₁ Set.Ioc 0 q₁) (hq₀q₁ : q₀ q₁) {C₀ C₁ : NNReal} (ht : t Set.Ioo 0 1) (hC₀ : 0 < C₀) (hC₁ : 0 < C₁) (hq : q⁻¹ = (1 - t) / q₀ + t / q₁) :
                0 < C_realInterpolation_ENNReal p₀ p₁ q₀ q₁ q C₀ C₁ A t
                def MeasureTheory.C_realInterpolation (p₀ p₁ q₀ q₁ q : ENNReal) (C₀ C₁ A : NNReal) (t : ENNReal) :

                The constant occurring in the real interpolation theorem

                Equations
                Instances For
                  theorem MeasureTheory.C_realInterpolation_pos {t p₀ p₁ q₀ q₁ q : ENNReal} {A : NNReal} (hA : 0 < A) (hp₀ : p₀ Set.Ioc 0 q₀) (hp₁ : p₁ Set.Ioc 0 q₁) (hq₀q₁ : q₀ q₁) {C₀ C₁ : NNReal} (ht : t Set.Ioo 0 1) (hC₀ : 0 < C₀) (hC₁ : 0 < C₁) (hq : q⁻¹ = (1 - t) / q₀ + t / q₁) :
                  0 < C_realInterpolation p₀ p₁ q₀ q₁ q C₀ C₁ A t
                  theorem MeasureTheory.coe_C_realInterpolation {t p₀ p₁ q₀ q₁ q : ENNReal} {A : NNReal} (hp₀ : p₀ Set.Ioc 0 q₀) (hp₁ : p₁ Set.Ioc 0 q₁) (hq₀q₁ : q₀ q₁) {C₀ C₁ : NNReal} (ht : t Set.Ioo 0 1) (hC₀ : 0 < C₀) (hC₁ : 0 < C₁) (hq : q⁻¹ = (1 - t) / q₀ + t / q₁) :
                  (C_realInterpolation p₀ p₁ q₀ q₁ q C₀ C₁ A t) = C_realInterpolation_ENNReal p₀ p₁ q₀ q₁ q C₀ C₁ A t
                  theorem MeasureTheory.Subadditive_trunc_from_SubadditiveOn_Lp₀p₁ {α : Type u_1} {α' : Type u_2} {E₁ : Type u_4} {E₂ : Type u_5} {m : MeasurableSpace α} {m' : MeasurableSpace α'} {μ : Measure α} {ν : Measure α'} {f : αE₁} {t : ENNReal} {T : (αE₁)α'E₂} {p₀ p₁ p : ENNReal} [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] [TopologicalSpace E₂] [ENormedAddCommMonoid E₂] (hp₀ : 0 < p₀) (hp₁ : 0 < p₁) {A : NNReal} (hA : 1 A) (ht : t Set.Ioo 0 1) (hp : p⁻¹ = (1 - t) / p₀ + t / p₁) (hT : AESubadditiveOn T (fun (f : αE₁) => MemLp f p₀ μ MemLp f p₁ μ) (↑A) ν) (hf : MemLp f p μ) :
                  Subadditive_trunc T (↑A) f ν
                  theorem MeasureTheory.exists_hasStrongType_real_interpolation {α : Type u_1} {α' : Type u_2} {E₁ : Type u_4} {E₂ : Type u_5} {m : MeasurableSpace α} {m' : MeasurableSpace α'} {μ : Measure α} {ν : Measure α'} {t : ENNReal} {T : (αE₁)α'E₂} {p₀ p₁ q₀ q₁ p q : ENNReal} [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] [MeasurableSpace E₁] [BorelSpace E₁] [TopologicalSpace.PseudoMetrizableSpace E₁] [TopologicalSpace E₂] [ENormedAddCommMonoid E₂] (hp₀ : p₀ Set.Ioc 0 q₀) (hp₁ : p₁ Set.Ioc 0 q₁) (hq₀q₁ : q₀ q₁) {C₀ C₁ A : NNReal} (hA : 1 A) (ht : t Set.Ioo 0 1) (hC₀ : 0 < C₀) (hC₁ : 0 < C₁) (hp : p⁻¹ = (1 - t) / p₀ + t / p₁) (hq : q⁻¹ = (1 - t) / q₀ + t / q₁) (hmT : ∀ (f : αE₁), MemLp f p μAEStronglyMeasurable (T f) ν) (hT : AESubadditiveOn T (fun (f : αE₁) => MemLp f p₀ μ MemLp f p₁ μ) (↑A) ν) (h₀T : HasWeakType T p₀ q₀ μ ν C₀) (h₁T : HasWeakType T p₁ q₁ μ ν C₁) :
                  HasStrongType T p q μ ν (C_realInterpolation p₀ p₁ q₀ q₁ q C₀ C₁ A t)

                  Marcinkiewicz real interpolation theorem