Documentation

Carleson.ToMathlib.RealInterpolation.Minkowski

Minkowski's integral inequality #

In this file, we prove Minkowski's integral inequality and apply it to truncations. We use this to deduce weak type estimates for truncations.

Minkowski's integral inequality #

theorem MeasureTheory.rpow_add_of_pos (a : ENNReal) (c d : ) (hc : 0 < c) (hd : 0 < d) :
a ^ (c + d) = a ^ c * a ^ d
theorem MeasureTheory.eq_of_le_of_le (a b : ENNReal) (hab : a b) (hab' : b a) :
a = b
def MeasureTheory.trunc_cut {α : Type u_1} {m : MeasurableSpace α} (f : αENNReal) (μ : Measure α) [SigmaFinite μ] (n : ) (x : α) :
Equations
Instances For
    theorem MeasureTheory.trunc_cut_mono {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} [SigmaFinite μ] {f : αENNReal} (x : α) :
    Monotone fun (n : ) => trunc_cut f μ n x
    theorem MeasureTheory.trunc_cut_mono₀ {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} [SigmaFinite μ] {f : αENNReal} :
    theorem MeasureTheory.trunc_cut_sup {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} [SigmaFinite μ] {f : αENNReal} (x : α) :
    ⨆ (n : ), trunc_cut f μ n x = f x
    theorem MeasureTheory.representationLp {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} [SigmaFinite μ] {f : αENNReal} (hf : AEMeasurable f μ) {p q : } (hp : p > 1) (hq : q 1) (hpq : p⁻¹ + q⁻¹ = 1) :
    (∫⁻ (x : α), f x ^ p μ) ^ (1 / p) = g{g' : αENNReal | AEMeasurable g' μ ∫⁻ (x : α), g' x ^ q μ 1}, ∫⁻ (x : α), f x * g x μ

    Characterization of ∫⁻ x : α, f x ^ p ∂μ by a duality argument.

    theorem MeasureTheory.aemeasurability_prod₁ {α : Type u_1} {β : Type u_3} [MeasurableSpace α] [MeasurableSpace β] {μ : Measure α} {ν : Measure β} [SFinite ν] f : α × βENNReal (hf : AEMeasurable f (μ.prod ν)) :
    ∀ᵐ (x : α) μ, AEMeasurable (f Prod.mk x) ν
    theorem MeasureTheory.aemeasurability_prod₂ {α : Type u_1} {β : Type u_3} [MeasurableSpace α] [MeasurableSpace β] {μ : Measure α} {ν : Measure β} [SFinite ν] [SFinite μ] f : α × βENNReal (hf : AEMeasurable f (μ.prod ν)) :
    ∀ᵐ (y : β) ν, AEMeasurable (f fun (x : α) => (x, y)) μ
    theorem MeasureTheory.aemeasurability_integral_component {α : Type u_1} {β : Type u_3} [MeasurableSpace α] [MeasurableSpace β] {μ : Measure α} {ν : Measure β} [SFinite ν] f : α × βENNReal (hf : AEMeasurable f (μ.prod ν)) :
    AEMeasurable (fun (x : α) => ∫⁻ (y : β), f (x, y) ν) μ
    theorem MeasureTheory.lintegral_lintegral_pow_swap {α : Type u_1} {β : Type u_3} {p : } (hp : 1 p) [MeasurableSpace α] [MeasurableSpace β] {μ : Measure α} {ν : Measure β} [SFinite ν] [SigmaFinite μ] f : αβENNReal (hf : AEMeasurable (Function.uncurry f) (μ.prod ν)) :
    (∫⁻ (x : α), (∫⁻ (y : β), f x y ν) ^ p μ) ^ p⁻¹ ∫⁻ (y : β), (∫⁻ (x : α), f x y ^ p μ) ^ p⁻¹ ν

    Minkowsi's integral inequality

    theorem MeasureTheory.lintegral_lintegral_pow_swap_rpow {α : Type u_1} {β : Type u_3} {p : } (hp : p 1) [MeasurableSpace α] [MeasurableSpace β] {μ : Measure α} {ν : Measure β} [SFinite ν] [SigmaFinite μ] f : αβENNReal (hf : AEMeasurable (Function.uncurry f) (μ.prod ν)) :
    ∫⁻ (x : α), (∫⁻ (y : β), f x y ν) ^ p μ (∫⁻ (y : β), (∫⁻ (x : α), f x y ^ p μ) ^ p⁻¹ ν) ^ p

    Apply Minkowski's integral inequality to truncations #

    theorem MeasureTheory.indicator_ton_measurable {α : Type u_1} {E₁ : Type u_4} {m : MeasurableSpace α} {μ : Measure α} {g : αE₁} [MeasurableSpace E₁] [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] [BorelSpace E₁] (hg : AEMeasurable g μ) (tc : ToneCouple) :
    theorem MeasureTheory.indicator_ton_measurable_lt {α : Type u_1} {E₁ : Type u_4} {m : MeasurableSpace α} {μ : Measure α} {g : αE₁} [MeasurableSpace E₁] [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] [BorelSpace E₁] (hg : AEMeasurable g μ) (tc : ToneCouple) :
    theorem MeasureTheory.AEMeasurable.trunc_ton {α : Type u_1} {E₁ : Type u_4} {m : MeasurableSpace α} {μ : Measure α} {f : αE₁} [MeasurableSpace E₁] [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] [BorelSpace E₁] (hf : AEMeasurable f μ) (tc : ToneCouple) :
    AEMeasurable (fun (a : ENNReal × α) => trunc f (tc.ton a.1) a.2) ((volume.restrict (Set.Ioi 0)).prod (μ.restrict (Function.support f)))
    theorem MeasureTheory.AEMeasurable.truncCompl_ton {α : Type u_1} {E₁ : Type u_4} {m : MeasurableSpace α} {μ : Measure α} {f : αE₁} [MeasurableSpace E₁] [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] [BorelSpace E₁] (hf : AEMeasurable f μ) (tc : ToneCouple) :
    AEMeasurable (fun (a : ENNReal × α) => truncCompl f (tc.ton a.1) a.2) ((volume.restrict (Set.Ioi 0)).prod (μ.restrict (Function.support f)))
    theorem MeasureTheory.restrict_to_support {α : Type u_1} {E₁ : Type u_4} {m : MeasurableSpace α} {μ : Measure α} {t : ENNReal} {p : } (hp : 0 < p) [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] (f : αE₁) :
    ∫⁻ (x : α) in Function.support f, trunc f t x‖ₑ ^ p μ = ∫⁻ (x : α), trunc f t x‖ₑ ^ p μ
    theorem MeasureTheory.restrict_to_support_truncCompl {α : Type u_1} {E₁ : Type u_4} {m : MeasurableSpace α} {μ : Measure α} {t : ENNReal} {p : } [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] (hp : 0 < p) (f : αE₁) :
    theorem MeasureTheory.restrict_to_support_trnc {α : Type u_1} {E₁ : Type u_4} {m : MeasurableSpace α} {μ : Measure α} {t : ENNReal} {p : } {j : Bool} [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] (hp : 0 < p) (f : αE₁) :
    ∫⁻ (x : α) in Function.support f, trnc j f t x‖ₑ ^ p μ = ∫⁻ (x : α), trnc j f t x‖ₑ ^ p μ
    theorem MeasureTheory.AEMeasurable.trunc_restrict {α : Type u_1} {E₁ : Type u_4} {m : MeasurableSpace α} {μ : Measure α} {f : αE₁} [MeasurableSpace E₁] [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] [BorelSpace E₁] {j : Bool} (hf : AEMeasurable f μ) (tc : ToneCouple) :
    AEMeasurable (fun (a : ENNReal × α) => trnc j f (tc.ton a.1) a.2) ((volume.restrict (Set.Ioi 0)).prod (μ.restrict (Function.support f)))
    theorem MeasureTheory.lintegral_lintegral_pow_swap_truncCompl {α : Type u_1} {E₁ : Type u_4} {m : MeasurableSpace α} {μ : Measure α} {f : αE₁} {q q₀ p₀ : } [MeasurableSpace E₁] [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] [TopologicalSpace.PseudoMetrizableSpace E₁] [BorelSpace E₁] {j : Bool} { : SigmaFinite (μ.restrict (Function.support f))} (hp₀ : 0 < p₀) (hp₀q₀ : p₀ q₀) (hf : AEStronglyMeasurable f μ) (tc : ToneCouple) :
    ∫⁻ (s : ) in Set.Ioi 0, (∫⁻ (a : α) in Function.support f, ENNReal.ofReal (s ^ (q - q₀ - 1)) ^ (p₀⁻¹ * q₀)⁻¹ * trnc j f (tc.ton (ENNReal.ofReal s)) a‖ₑ ^ p₀ μ) ^ (p₀⁻¹ * q₀) (∫⁻ (a : α) in Function.support f, (∫⁻ (s : ) in Set.Ioi 0, (ENNReal.ofReal (s ^ (q - q₀ - 1)) ^ (p₀⁻¹ * q₀)⁻¹ * trnc j f (tc.ton (ENNReal.ofReal s)) a‖ₑ ^ p₀) ^ (p₀⁻¹ * q₀)) ^ (p₀⁻¹ * q₀)⁻¹ μ) ^ (p₀⁻¹ * q₀)
    theorem MeasureTheory.lintegral_congr_support {α : Type u_1} {E₁ : Type u_4} {m : MeasurableSpace α} {μ : Measure α} {f : αE₁} {g h : αENNReal} [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] (hf : AEStronglyMeasurable f μ) (hgh : xFunction.support f, g x = h x) :
    ∫⁻ (x : α) in Function.support f, g x μ = ∫⁻ (x : α) in Function.support f, h x μ
    theorem MeasureTheory.estimate_trnc {α : Type u_1} {E₁ : Type u_4} {m : MeasurableSpace α} {μ : Measure α} {f : αE₁} {p₀ q₀ q : } {spf : ScaledPowerFunction} {j : Bool} [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] [MeasurableSpace E₁] [BorelSpace E₁] [TopologicalSpace.PseudoMetrizableSpace E₁] (hp₀ : 0 < p₀) (hq₀ : 0 < q₀) (hp₀q₀ : p₀ q₀) (hf : AEStronglyMeasurable f μ) (hf₂ : SigmaFinite (μ.restrict (Function.support f))) (hpowers : if (j ^^ (spf_to_tc spf).mon) = true then q₀ < q else q < q₀) (hpow_pos : 0 < q₀ + spf.σ⁻¹ * (q - q₀)) :
    ∫⁻ (s : ) in Set.Ioi 0, eLpNorm (trnc j f ((spf_to_tc spf).ton (ENNReal.ofReal s))) (ENNReal.ofReal p₀) μ ^ q₀ * ENNReal.ofReal (s ^ (q - q₀ - 1)) spf.d ^ (q - q₀) * ENNReal.ofReal |q - q₀|⁻¹ * (∫⁻ (a : α) in Function.support f, f a‖ₑ ^ (p₀ + spf.σ⁻¹ * (q - q₀) * (p₀ / q₀)) μ) ^ (p₀⁻¹ * q₀)

    One of the key estimates for the real interpolation theorem, not yet using the particular choice of exponent and scale in the ScaledPowerFunction.

    def MeasureTheory.sel (j : Bool) (p₀ p₁ : ENNReal) :
    Equations
    Instances For
      theorem MeasureTheory.estimate_trnc₁ {α : Type u_1} {E₁ : Type u_4} {m : MeasurableSpace α} {p q p₀ q₀ p₁ q₁ : ENNReal} {μ : Measure α} {f : αE₁} {t : ENNReal} {spf : ScaledPowerFunction} {j : Bool} [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] [MeasurableSpace E₁] [BorelSpace E₁] [TopologicalSpace.PseudoMetrizableSpace E₁] (ht : t Set.Ioo 0 1) (hp₀ : 0 < p₀) (hq₀ : 0 < q₀) (hp₁ : 0 < p₁) (hq₁ : 0 < q₁) (hpq : sel j p₀ p₁ sel j q₀ q₁) (hp' : sel j p₀ p₁ ) (hq' : sel j q₀ q₁ ) (hp₀p₁ : p₀ < p₁) (hq₀q₁ : q₀ q₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) (hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹) (hf : AEStronglyMeasurable f μ) (hf₂ : SigmaFinite (μ.restrict (Function.support f))) (hspf : spf.σ = ComputationsChoiceExponent.ζ p₀ q₀ p₁ q₁ t.toReal) :
      ∫⁻ (s : ) in Set.Ioi 0, eLpNorm (trnc j f ((spf_to_tc spf).ton (ENNReal.ofReal s))) (sel j p₀ p₁) μ ^ (sel j q₀ q₁).toReal * ENNReal.ofReal (s ^ (q.toReal - (sel j q₀ q₁).toReal - 1)) spf.d ^ (q.toReal - (sel j q₀ q₁).toReal) * ENNReal.ofReal |q.toReal - (sel j q₀ q₁).toReal|⁻¹ * (eLpNorm f p μ ^ p.toReal) ^ ((sel j p₀ p₁).toReal⁻¹ * (sel j q₀ q₁).toReal)

      One of the key estimates for the real interpolation theorem, now using the particular choice of exponent, but not yet using the particular choice of scale in the ScaledPowerFunction.

      theorem MeasureTheory.wnorm_eq_zero_iff {α : Type u_1} {m : MeasurableSpace α} {ε : Type u_7} [TopologicalSpace ε] {μ : Measure α} [ENormedAddMonoid ε] {f : αε} {p : ENNReal} (hp : p 0) :
      wnorm f p μ = 0 f =ᶠ[ae μ] 0

      Weaktype estimates applied to truncations #

      theorem MeasureTheory.eLpNorm_trnc_est {α : Type u_1} {E₁ : Type u_4} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {t : ENNReal} [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] {f : αE₁} {j : Bool} :
      eLpNorm (trnc j f t) p μ eLpNorm f p μ
      theorem MeasureTheory.weaktype_estimate {α : Type u_1} {α' : Type u_2} {m : MeasurableSpace α} {m' : MeasurableSpace α'} {ε₁ : Type u_8} {ε₂ : Type u_9} [TopologicalSpace ε₁] [TopologicalSpace ε₂] {μ : Measure α} {ν : Measure α'} {t : ENNReal} [ContinuousENorm ε₁] [ContinuousENorm ε₂] {T : (αε₁)α'ε₂} {C₀ : NNReal} {p q : ENNReal} {f : αε₁} (hq : 0 < q) (hq' : q < ) (hf : MemLp f p μ) (h₀T : HasWeakType T p q μ ν C₀) (ht : 0 < t) :
      distribution (T f) t ν C₀ ^ q.toReal * eLpNorm f p μ ^ q.toReal * t ^ (-q.toReal)
      theorem MeasureTheory.weaktype_estimate_top {α : Type u_1} {α' : Type u_2} {m : MeasurableSpace α} {m' : MeasurableSpace α'} {ε₁ : Type u_8} {ε₂ : Type u_9} [TopologicalSpace ε₁] [TopologicalSpace ε₂] {μ : Measure α} {ν : Measure α'} {t : ENNReal} [ContinuousENorm ε₁] [ContinuousENorm ε₂] {T : (αε₁)α'ε₂} {C : NNReal} {p q : ENNReal} (hq' : q = ) {f : αε₁} (hf : MemLp f p μ) (hT : HasWeakType T p q μ ν C) (ht : C * eLpNorm f p μ t) :
      distribution (T f) t ν = 0
      theorem MeasureTheory.weaktype_aux₀ {α : Type u_1} {α' : Type u_2} {m : MeasurableSpace α} {m' : MeasurableSpace α'} {ε₁ : Type u_8} {ε₂ : Type u_9} [TopologicalSpace ε₁] [TopologicalSpace ε₂] {μ : Measure α} {ν : Measure α'} [ENormedAddMonoid ε₁] [ENormedAddMonoid ε₂] {f : αε₁} {T : (αε₁)α'ε₂} {p₀ q₀ p q : ENNReal} (hp₀ : 0 < p₀) (hq₀ : 0 < q₀) (hp : 0 < p) (hq : 0 < q) {C₀ : NNReal} (h₀T : HasWeakType T p₀ q₀ μ ν C₀) (hf : AEStronglyMeasurable f μ) (hF : eLpNorm f p μ = 0) :
      eLpNorm (T f) q ν = 0

      If T has weaktype p₀-p₁, f is AEStronglyMeasurable and the p-norm of f vanishes, then the q-norm of T f vanishes.

      theorem MeasureTheory.weaktype_estimate_truncCompl {α : Type u_1} {α' : Type u_2} {E₁ : Type u_4} {E₂ : Type u_5} {m : MeasurableSpace α} {m' : MeasurableSpace α'} {μ : Measure α} {ν : Measure α'} {t : ENNReal} [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] [TopologicalSpace E₂] [ENormedAddCommMonoid E₂] {T : (αE₁)α'E₂} {C₀ : NNReal} {p p₀ : ENNReal} {f : αE₁} (hp₀ : 0 < p₀) {q₀ : ENNReal} (hp : p ) (hq₀ : 0 < q₀) (hq₀' : q₀ < ) (hp₀p : p₀ p) (hf : MemLp f p μ) (h₀T : HasWeakType T p₀ q₀ μ ν C₀) (ht : 0 < t) {a : ENNReal} (ha : 0 < a) :
      distribution (T (truncCompl f a)) t ν C₀ ^ q₀.toReal * eLpNorm (truncCompl f a) p₀ μ ^ q₀.toReal * t ^ (-q₀.toReal)
      theorem MeasureTheory.weaktype_estimate_trunc {α : Type u_1} {α' : Type u_2} {E₁ : Type u_4} {E₂ : Type u_5} {m : MeasurableSpace α} {m' : MeasurableSpace α'} {μ : Measure α} {ν : Measure α'} {t : ENNReal} [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] [TopologicalSpace E₂] [ENormedAddCommMonoid E₂] {T : (αE₁)α'E₂} {C₁ : NNReal} {p p₁ q₁ : ENNReal} {f : αE₁} (hp : 0 < p) (hq₁ : 0 < q₁) (hq₁' : q₁ < ) (hp₁p : p p₁) (hf : MemLp f p μ) (h₁T : HasWeakType T p₁ q₁ μ ν C₁) (ht : 0 < t) {a : ENNReal} (ha : a ) :
      distribution (T (trunc f a)) t ν C₁ ^ q₁.toReal * eLpNorm (trunc f a) p₁ μ ^ q₁.toReal * t ^ (-q₁.toReal)
      theorem MeasureTheory.weaktype_estimate_trunc_top_top {α : Type u_1} {α' : Type u_2} {E₁ : Type u_4} {E₂ : Type u_5} {m : MeasurableSpace α} {m' : MeasurableSpace α'} {μ : Measure α} {ν : Measure α'} {t : ENNReal} [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] [TopologicalSpace E₂] [ENormedAddCommMonoid E₂] {T : (αE₁)α'E₂} {a : ENNReal} {C₁ : NNReal} (hC₁ : 0 < C₁) {p p₁ q₁ : ENNReal} (hp : 0 < p) (hp₁ : p₁ = ) (hq₁ : q₁ = ) (hp₁p : p p₁) {f : αE₁} (hf : MemLp f p μ) (h₁T : HasWeakType T p₁ q₁ μ ν C₁) (ha : a = t / C₁) :
      distribution (T (trunc f a)) t ν = 0
      theorem MeasureTheory.weaktype_estimate_truncCompl_top {α : Type u_1} {α' : Type u_2} {E₁ : Type u_4} {E₂ : Type u_5} {m : MeasurableSpace α} {m' : MeasurableSpace α'} {μ : Measure α} {ν : Measure α'} {t : ENNReal} [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] [TopologicalSpace E₂] [ENormedAddCommMonoid E₂] {T : (αE₁)α'E₂} {C₀ : NNReal} (hC₀ : 0 < C₀) {p p₀ q₀ : ENNReal} (hp₀ : 0 < p₀) (hq₀ : q₀ = ) (hp₀p : p₀ < p) (hp : p ) {f : αE₁} (hf : MemLp f p μ) (h₀T : HasWeakType T p₀ q₀ μ ν C₀) (ht : 0 < t) {a d : ENNReal} (ha : a = (t / d) ^ (p₀.toReal / (p₀.toReal - p.toReal))) (hdeq : d = (C₀ ^ p₀.toReal * eLpNorm f p μ ^ p.toReal) ^ p₀.toReal⁻¹) :
      distribution (T (truncCompl f a)) t ν = 0
      theorem MeasureTheory.weaktype_estimate_trunc_top {α : Type u_1} {α' : Type u_2} {E₁ : Type u_4} {E₂ : Type u_5} {m : MeasurableSpace α} {m' : MeasurableSpace α'} {μ : Measure α} {ν : Measure α'} {t : ENNReal} [TopologicalSpace E₁] [ENormedAddCommMonoid E₁] [TopologicalSpace E₂] [ENormedAddCommMonoid E₂] {T : (αE₁)α'E₂} {C₁ : NNReal} (hC₁ : 0 < C₁) {p p₁ q₁ : ENNReal} (hp : 0 < p) (hp₁ : p₁ < ) (hq₁ : q₁ = ) (hp₁p : p < p₁) {f : αE₁} (hf : MemLp f p μ) (h₁T : HasWeakType T p₁ q₁ μ ν C₁) (ht : 0 < t) {a d : ENNReal} (hd : 0 < d) (ha : a = (t / d) ^ (p₁.toReal / (p₁.toReal - p.toReal))) (hdeq : d = (C₁ ^ p₁.toReal * eLpNorm f p μ ^ p.toReal) ^ p₁.toReal⁻¹) :
      distribution (T (trunc f a)) t ν = 0