Documentation

Carleson.ToMathlib.MeasureTheory.Function.LpSeminorm.Basic

theorem MeasureTheory.eLpNormEssSup_map_measure' {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] {β : Type u_6} { : MeasurableSpace β} {f : αβ} {g : βE} [MeasurableSpace E] [OpensMeasurableSpace E] (hg : AEMeasurable g (Measure.map f μ)) (hf : AEMeasurable f μ) :
theorem MeasureTheory.eLpNorm_map_measure' {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {β : Type u_6} { : MeasurableSpace β} {f : αβ} {g : βE} [MeasurableSpace E] [OpensMeasurableSpace E] (hg : AEMeasurable g (Measure.map f μ)) (hf : AEMeasurable f μ) :
eLpNorm g p (Measure.map f μ) = eLpNorm (g f) p μ
theorem MeasureTheory.eLpNorm_comp_measurePreserving' {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {β : Type u_6} { : MeasurableSpace β} {f : αβ} {g : βE} {ν : Measure β} [MeasurableSpace E] [OpensMeasurableSpace E] (hg : AEMeasurable g ν) (hf : MeasurePreserving f μ ν) :
eLpNorm (g f) p μ = eLpNorm g p ν
theorem MeasureTheory.eLpNormEssSup_iSup {α : Type u_6} {ι : Type u_7} [Countable ι] [MeasurableSpace α] {μ : Measure α} (f : ιαENNReal) :
⨆ (n : ι), eLpNormEssSup (f n) μ = eLpNormEssSup (⨆ (n : ι), f n) μ
theorem MeasureTheory.eLpNorm_iSup' {α : Type u_6} [MeasurableSpace α] {μ : Measure α} {p : ENNReal} {f : αENNReal} (hf : ∀ (n : ), AEMeasurable (f n) μ) (h_mono : ∀ᵐ (x : α) μ, Monotone fun (n : ) => f n x) :
⨆ (n : ), eLpNorm (f n) p μ = eLpNorm (⨆ (n : ), f n) p μ

Monotone convergence applied to eLpNorms. AEMeasurable variant. Possibly imperfect hypotheses, particularly on p. Note that for p = ∞ the stronger statement in eLpNormEssSup_iSup holds.