Documentation

Carleson.MetricCarleson.Main

def Θ' (X : Type u_1) {a : } [MetricSpace X] {K : XX} [KernelProofData a K] :
Set (Θ X)

A countable dense subset of Θ X.

Equations
Instances For
    theorem countable_Θ' {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] :
    theorem dense_Θ' {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] :
    def J102 :

    A countable dense subset of the range of R₁ and R₂.

    Equations
    Instances For
      theorem carlesonOperator_eq_biSup_Θ'_J102 {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] {f : X} {x : X} (mf : Measurable f) (nf : (fun (x : X) => f x) 1) :
      carlesonOperator K f x = θΘ' X, jJ102, carlesonOperatorIntegrand K θ (↑j.1) (↑j.2) f x‖ₑ
      def enumΘ' {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] (nΘ' : (Θ' X).Nonempty) :
      (Θ' X)

      An enumeration of Θ' X, assuming it is nonempty. It may contain duplicates.

      Equations
      Instances For
        theorem surjective_enumΘ' {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] (nΘ' : (Θ' X).Nonempty) :
        theorem biSup_Θ'_eq_biSup_enumΘ' {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] (nΘ' : (Θ' X).Nonempty) (g : Θ XXENNReal) {x : X} :
        θΘ' X, g θ x = ⨆ (n : ), iFinset.range (n + 1), g (↑(enumΘ' nΘ' i)) x
        def enumΘ'ArgMax {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] (nΘ' : (Θ' X).Nonempty) (g : Θ XXENNReal) (n : ) (x : X) :

        The argmax of g (enumΘ' nΘ' i) x over i ≤ n with lower indices winning ties.

        Equations
        Instances For
          theorem enumΘ'ArgMax_mem_range {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] (nΘ' : (Θ' X).Nonempty) (g : Θ XXENNReal) {n : } {x : X} :
          enumΘ'ArgMax nΘ' g n x Finset.range (n + 1)
          theorem enumΘ'ArgMax_eq_iff {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] (nΘ' : (Θ' X).Nonempty) (g : Θ XXENNReal) {n i : } {x : X} (hi : i n) :
          enumΘ'ArgMax nΘ' g n x = i (∀ jn, g (↑(enumΘ' nΘ' j)) x g (↑(enumΘ' nΘ' i)) x) j < i, g (↑(enumΘ' nΘ' j)) x < g (↑(enumΘ' nΘ' i)) x

          The characterising property of enumΘ'ArgMax.

          def QΘ' {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] (nΘ' : (Θ' X).Nonempty) {g : Θ XXENNReal} (mg : ∀ (θ : Θ X), Measurable (g θ)) (n : ) :

          The simple function corresponding to the blueprint's Q_n.

          Equations
          • QΘ' nΘ' mg n = { toFun := fun (x : X) => (enumΘ' nΘ' (enumΘ'ArgMax nΘ' g n x)), measurableSet_fiber' := , finite_range' := }
          Instances For
            theorem biSup_enumΘ'_le_QΘ' {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] (nΘ' : (Θ' X).Nonempty) {g : Θ XXENNReal} (mg : ∀ (θ : Θ X), Measurable (g θ)) {n : } {x : X} :
            iFinset.range (n + 1), g (↑(enumΘ' nΘ' i)) x g ((QΘ' nΘ' mg n) x) x
            theorem lowerSemicontinuous_LNT {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] {f : X} {Q : MeasureTheory.SimpleFunc X (Θ X)} {θ : Θ X} :
            theorem BST_LNT_of_BST_NT {X : Type u_1} {a : } [MetricSpace X] {K : XX} [KernelProofData a K] {Q : MeasureTheory.SimpleFunc X (Θ X)} (hT : MeasureTheory.HasBoundedStrongType (fun (x1 : X) (x2 : X) => nontangentialOperator K x1 x2) 2 2 MeasureTheory.volume MeasureTheory.volume (C_Ts a)) (θ : Θ X) :
            theorem metric_carleson {X : Type u_1} {a : } [MetricSpace X] {q q' : NNReal} {F G : Set X} {K : XX} [KernelProofData a K] {f : X} [IsCancellative X (defaultτ a)] (hq : q Set.Ioc 1 2) (hqq' : q.HolderConjugate q') (mF : MeasurableSet F) (mG : MeasurableSet G) (mf : Measurable f) (nf : (fun (x : X) => f x) F.indicator 1) (hT : MeasureTheory.HasBoundedStrongType (fun (x1 : X) (x2 : X) => nontangentialOperator K x1 x2) 2 2 MeasureTheory.volume MeasureTheory.volume (C_Ts a)) :

            Theorem 1.1.1

            theorem metric_carleson' {X : Type u_1} {a : } [MetricSpace X] {q q' : NNReal} {F G : Set X} {K : XX} [KernelProofData a K] {f : X} [IsCancellative X (defaultτ a)] (hq : q Set.Ioc 1 2) (hqq' : q.HolderConjugate q') (mF : MeasurableSet F) (mG : MeasurableSet G) (mf : Measurable f) (nf : (fun (x : X) => f x) F.indicator 1) (hT : MeasureTheory.HasBoundedStrongType (fun (x1 : X) (x2 : X) => nontangentialOperator K x1 x2) 2 2 MeasureTheory.volume MeasureTheory.volume (C_Ts a)) :
            ∫⁻ (x : X) in G, carlesonOperator K f x 2 ^ (443 * a ^ 3) / (q - 1) ^ 6 * MeasureTheory.volume G ^ (↑q')⁻¹ * MeasureTheory.volume F ^ (↑q)⁻¹