Documentation

Mathlib.Algebra.Order.Archimedean.Basic

Archimedean groups and fields. #

This file defines the archimedean property for ordered groups and proves several results connected to this notion. Being archimedean means that for all elements x and y>0 there exists a natural number n such that x ≤ n • y.

Main definitions #

Main statements #

class Archimedean (α : Type u_2) [AddCommMonoid α] [PartialOrder α] :

An ordered additive commutative monoid is called Archimedean if for any two elements x, y such that 0 < y, there exists a natural number n such that x ≤ n • y.

  • arch (x : α) {y : α} : 0 < y∃ (n : ), x n y

    For any two elements x, y such that 0 < y, there exists a natural number n such that x ≤ n • y.

Instances
class MulArchimedean (α : Type u_2) [CommMonoid α] [PartialOrder α] :

An ordered commutative monoid is called MulArchimedean if for any two elements x, y such that 1 < y, there exists a natural number n such that x ≤ y ^ n.

  • arch (x : α) {y : α} : 1 < y∃ (n : ), x y ^ n

    For any two elements x, y such that 1 < y, there exists a natural number n such that x ≤ y ^ n.

Instances
theorem exists_lt_pow {M : Type u_2} [CommMonoid M] [PartialOrder M] [MulArchimedean M] [MulLeftStrictMono M] {a : M} (ha : 1 < a) (b : M) :
∃ (n : ), b < a ^ n
theorem exists_lt_nsmul {M : Type u_2} [AddCommMonoid M] [PartialOrder M] [Archimedean M] [AddLeftStrictMono M] {a : M} (ha : 0 < a) (b : M) :
∃ (n : ), b < n a
theorem existsUnique_zpow_near_of_one_lt {α : Type u_1} [CommGroup α] [LinearOrder α] [IsOrderedMonoid α] [MulArchimedean α] {a : α} (ha : 1 < a) (g : α) :
∃! k : , a ^ k g g < a ^ (k + 1)

An archimedean decidable linearly ordered CommGroup has a version of the floor: for a > 1, any g in the group lies between some two consecutive powers of a.

theorem existsUnique_zsmul_near_of_pos {α : Type u_1} [AddCommGroup α] [LinearOrder α] [IsOrderedAddMonoid α] [Archimedean α] {a : α} (ha : 0 < a) (g : α) :
∃! k : , k a g g < (k + 1) a

An archimedean decidable linearly ordered AddCommGroup has a version of the floor: for a > 0, any g in the group lies between some two consecutive multiples of a. -/

theorem existsUnique_zpow_near_of_one_lt' {α : Type u_1} [CommGroup α] [LinearOrder α] [IsOrderedMonoid α] [MulArchimedean α] {a : α} (ha : 1 < a) (g : α) :
∃! k : , 1 g / a ^ k g / a ^ k < a
theorem existsUnique_zsmul_near_of_pos' {α : Type u_1} [AddCommGroup α] [LinearOrder α] [IsOrderedAddMonoid α] [Archimedean α] {a : α} (ha : 0 < a) (g : α) :
∃! k : , 0 g - k a g - k a < a
theorem existsUnique_div_zpow_mem_Ico {α : Type u_1} [CommGroup α] [LinearOrder α] [IsOrderedMonoid α] [MulArchimedean α] {a : α} (ha : 1 < a) (b c : α) :
∃! m : , b / a ^ m Set.Ico c (c * a)
theorem existsUnique_sub_zsmul_mem_Ico {α : Type u_1} [AddCommGroup α] [LinearOrder α] [IsOrderedAddMonoid α] [Archimedean α] {a : α} (ha : 0 < a) (b c : α) :
∃! m : , b - m a Set.Ico c (c + a)
theorem existsUnique_mul_zpow_mem_Ico {α : Type u_1} [CommGroup α] [LinearOrder α] [IsOrderedMonoid α] [MulArchimedean α] {a : α} (ha : 1 < a) (b c : α) :
∃! m : , b * a ^ m Set.Ico c (c * a)
theorem existsUnique_add_zsmul_mem_Ico {α : Type u_1} [AddCommGroup α] [LinearOrder α] [IsOrderedAddMonoid α] [Archimedean α] {a : α} (ha : 0 < a) (b c : α) :
∃! m : , b + m a Set.Ico c (c + a)
theorem existsUnique_add_zpow_mem_Ioc {α : Type u_1} [CommGroup α] [LinearOrder α] [IsOrderedMonoid α] [MulArchimedean α] {a : α} (ha : 1 < a) (b c : α) :
∃! m : , b * a ^ m Set.Ioc c (c * a)
theorem existsUnique_add_zsmul_mem_Ioc {α : Type u_1} [AddCommGroup α] [LinearOrder α] [IsOrderedAddMonoid α] [Archimedean α] {a : α} (ha : 0 < a) (b c : α) :
∃! m : , b + m a Set.Ioc c (c + a)
theorem existsUnique_sub_zpow_mem_Ioc {α : Type u_1} [CommGroup α] [LinearOrder α] [IsOrderedMonoid α] [MulArchimedean α] {a : α} (ha : 1 < a) (b c : α) :
∃! m : , b / a ^ m Set.Ioc c (c * a)
theorem existsUnique_sub_zsmul_mem_Ioc {α : Type u_1} [AddCommGroup α] [LinearOrder α] [IsOrderedAddMonoid α] [Archimedean α] {a : α} (ha : 0 < a) (b c : α) :
∃! m : , b - m a Set.Ioc c (c + a)
theorem exists_nat_ge {α : Type u_1} [Semiring α] [PartialOrder α] [IsOrderedRing α] [Archimedean α] (x : α) :
∃ (n : ), x n
@[instance 100]
instance instIsDirectedLeOfIsOrderedRingOfArchimedean {α : Type u_1} [Semiring α] [PartialOrder α] [IsOrderedRing α] [Archimedean α] :
IsDirected α fun (x1 x2 : α) => x1 x2
theorem exists_nat_gt {α : Type u_1} [Semiring α] [PartialOrder α] [IsStrictOrderedRing α] [Archimedean α] (x : α) :
∃ (n : ), x < n
theorem add_one_pow_unbounded_of_pos {α : Type u_1} [Semiring α] [PartialOrder α] [IsStrictOrderedRing α] [Archimedean α] {y : α} (x : α) (hy : 0 < y) :
∃ (n : ), x < (y + 1) ^ n
theorem pow_unbounded_of_one_lt {α : Type u_1} [Semiring α] [PartialOrder α] [IsStrictOrderedRing α] [Archimedean α] {y : α} [ExistsAddOfLE α] (x : α) (hy1 : 1 < y) :
∃ (n : ), x < y ^ n
theorem exists_int_ge {R : Type u_3} [Ring R] [PartialOrder R] [IsOrderedRing R] [Archimedean R] (x : R) :
∃ (n : ), x n
theorem exists_int_le {R : Type u_3} [Ring R] [PartialOrder R] [IsOrderedRing R] [Archimedean R] (x : R) :
∃ (n : ), n x
@[instance 100]
instance instIsDirectedGe {R : Type u_3} [Ring R] [PartialOrder R] [IsOrderedRing R] [Archimedean R] :
IsDirected R fun (x1 x2 : R) => x1 x2
theorem exists_int_gt {α : Type u_1} [Ring α] [PartialOrder α] [IsStrictOrderedRing α] [Archimedean α] (x : α) :
∃ (n : ), x < n
theorem exists_int_lt {α : Type u_1} [Ring α] [PartialOrder α] [IsStrictOrderedRing α] [Archimedean α] (x : α) :
∃ (n : ), n < x
theorem exists_floor {α : Type u_1} [Ring α] [PartialOrder α] [IsStrictOrderedRing α] [Archimedean α] (x : α) :
∃ (fl : ), ∀ (z : ), z fl z x
theorem exists_nat_pow_near {α : Type u_1} [Semiring α] [LinearOrder α] [IsStrictOrderedRing α] [Archimedean α] [ExistsAddOfLE α] {x y : α} (hx : 1 x) (hy : 1 < y) :
∃ (n : ), y ^ n x x < y ^ (n + 1)

Every x greater than or equal to 1 is between two successive natural-number powers of every y greater than one.

theorem exists_nat_one_div_lt {α : Type u_1} [Semifield α] [LinearOrder α] [IsStrictOrderedRing α] [Archimedean α] {ε : α} ( : 0 < ε) :
∃ (n : ), 1 / (n + 1) < ε
theorem exists_mem_Ico_zpow {α : Type u_1} [Semifield α] [LinearOrder α] [IsStrictOrderedRing α] [Archimedean α] {x y : α} [ExistsAddOfLE α] (hx : 0 < x) (hy : 1 < y) :
∃ (n : ), x Set.Ico (y ^ n) (y ^ (n + 1))

Every positive x is between two successive integer powers of another y greater than one. This is the same as exists_mem_Ioc_zpow, but with ≤ and < the other way around.

theorem exists_mem_Ioc_zpow {α : Type u_1} [Semifield α] [LinearOrder α] [IsStrictOrderedRing α] [Archimedean α] {x y : α} [ExistsAddOfLE α] (hx : 0 < x) (hy : 1 < y) :
∃ (n : ), x Set.Ioc (y ^ n) (y ^ (n + 1))

Every positive x is between two successive integer powers of another y greater than one. This is the same as exists_mem_Ico_zpow, but with ≤ and < the other way around.

theorem exists_pow_lt_of_lt_one {α : Type u_1} [Semifield α] [LinearOrder α] [IsStrictOrderedRing α] [Archimedean α] {x y : α} [ExistsAddOfLE α] (hx : 0 < x) (hy : y < 1) :
∃ (n : ), y ^ n < x

For any y < 1 and any positive x, there exists n : ℕ with y ^ n < x.

theorem exists_nat_pow_near_of_lt_one {α : Type u_1} [Semifield α] [LinearOrder α] [IsStrictOrderedRing α] [Archimedean α] {x y : α} [ExistsAddOfLE α] (xpos : 0 < x) (hx : x 1) (ypos : 0 < y) (hy : y < 1) :
∃ (n : ), y ^ (n + 1) < x x y ^ n

Given x and y between 0 and 1, x is between two successive powers of y. This is the same as exists_nat_pow_near, but for elements between 0 and 1

theorem exists_pow_btwn_of_lt_mul {α : Type u_1} [Semifield α] [LinearOrder α] [IsStrictOrderedRing α] [Archimedean α] [ExistsAddOfLE α] {a b c : α} (h : a < b * c) (hb₀ : 0 < b) (hb₁ : b 1) (hc₀ : 0 < c) (hc₁ : c < 1) :
∃ (n : ), a < c ^ n c ^ n < b

If a < b * c, 0 < b ≤ 1 and 0 < c < 1, then there is a power c ^ n with n : ℕ strictly between a and b.

theorem exists_zpow_btwn_of_lt_mul {α : Type u_1} [Semifield α] [LinearOrder α] [IsStrictOrderedRing α] [Archimedean α] [ExistsAddOfLE α] {a b c : α} (h : a < b * c) (hb₀ : 0 < b) (hc₀ : 0 < c) (hc₁ : c < 1) :
∃ (n : ), a < c ^ n c ^ n < b

If a < b * c, b is positive and 0 < c < 1, then there is a power c ^ n with n : ℤ strictly between a and b.

theorem archimedean_iff_nat_lt {α : Type u_1} [Field α] [LinearOrder α] [IsStrictOrderedRing α] :
Archimedean α ∀ (x : α), ∃ (n : ), x < n
theorem archimedean_iff_nat_le {α : Type u_1} [Field α] [LinearOrder α] [IsStrictOrderedRing α] :
Archimedean α ∀ (x : α), ∃ (n : ), x n
theorem archimedean_iff_int_lt {α : Type u_1} [Field α] [LinearOrder α] [IsStrictOrderedRing α] :
Archimedean α ∀ (x : α), ∃ (n : ), x < n
theorem archimedean_iff_int_le {α : Type u_1} [Field α] [LinearOrder α] [IsStrictOrderedRing α] :
Archimedean α ∀ (x : α), ∃ (n : ), x n
theorem archimedean_iff_rat_lt {α : Type u_1} [Field α] [LinearOrder α] [IsStrictOrderedRing α] :
Archimedean α ∀ (x : α), ∃ (q : ), x < q
theorem archimedean_iff_rat_le {α : Type u_1} [Field α] [LinearOrder α] [IsStrictOrderedRing α] :
Archimedean α ∀ (x : α), ∃ (q : ), x q
theorem exists_rat_gt {α : Type u_1} [Field α] [LinearOrder α] [IsStrictOrderedRing α] [Archimedean α] (x : α) :
∃ (q : ), x < q
theorem exists_rat_lt {α : Type u_1} [Field α] [LinearOrder α] [IsStrictOrderedRing α] [Archimedean α] (x : α) :
∃ (q : ), q < x
theorem exists_rat_btwn {α : Type u_1} [Field α] [LinearOrder α] [IsStrictOrderedRing α] [Archimedean α] {x y : α} (h : x < y) :
∃ (q : ), x < q q < y
theorem exists_pow_btwn {α : Type u_1} [Field α] [LinearOrder α] [IsStrictOrderedRing α] [Archimedean α] {n : } (hn : n 0) {x y : α} (h : x < y) (hy : 0 < y) :
∃ (q : α), 0 < q x < q ^ n q ^ n < y
@[deprecated exists_pow_btwn (since := "2024-12-26")]
theorem exists_rat_pow_btwn_rat {α : Type u_1} [Field α] [LinearOrder α] [IsStrictOrderedRing α] [Archimedean α] {n : } (hn : n 0) {x y : α} (h : x < y) (hy : 0 < y) :
∃ (q : α), 0 < q x < q ^ n q ^ n < y

Alias of exists_pow_btwn.

theorem exists_rat_pow_btwn {α : Type u_1} [Field α] [LinearOrder α] [IsStrictOrderedRing α] [Archimedean α] {n : } (hn : n 0) {x y : α} (h : x < y) (hy : 0 < y) :
∃ (q : ), 0 < q x < q ^ n q ^ n < y

There is a rational power between any two positive elements of an archimedean ordered field.

theorem le_of_forall_rat_lt_imp_le {α : Type u_1} [Field α] [LinearOrder α] [IsStrictOrderedRing α] [Archimedean α] {x y : α} (h : ∀ (q : ), q < xq y) :
x y
theorem le_of_forall_lt_rat_imp_le {α : Type u_1} [Field α] [LinearOrder α] [IsStrictOrderedRing α] [Archimedean α] {x y : α} (h : ∀ (q : ), y < qx q) :
x y
theorem le_iff_forall_rat_lt_imp_le {α : Type u_1} [Field α] [LinearOrder α] [IsStrictOrderedRing α] [Archimedean α] {x y : α} :
x y ∀ (q : ), q < xq y
theorem le_iff_forall_lt_rat_imp_le {α : Type u_1} [Field α] [LinearOrder α] [IsStrictOrderedRing α] [Archimedean α] {x y : α} :
x y ∀ (q : ), y < qx q
theorem eq_of_forall_rat_lt_iff_lt {α : Type u_1} [Field α] [LinearOrder α] [IsStrictOrderedRing α] [Archimedean α] {x y : α} (h : ∀ (q : ), q < x q < y) :
x = y
theorem eq_of_forall_lt_rat_iff_lt {α : Type u_1} [Field α] [LinearOrder α] [IsStrictOrderedRing α] [Archimedean α] {x y : α} (h : ∀ (q : ), x < q y < q) :
x = y
theorem exists_pos_rat_lt {α : Type u_1} [Field α] [LinearOrder α] [IsStrictOrderedRing α] [Archimedean α] {x : α} (x0 : 0 < x) :
∃ (q : ), 0 < q q < x
theorem exists_rat_near {α : Type u_1} [Field α] [LinearOrder α] [IsStrictOrderedRing α] [Archimedean α] {ε : α} (x : α) (ε0 : 0 < ε) :
∃ (q : ), |x - q| < ε
noncomputable def Archimedean.floorRing (α : Type u_3) [Ring α] [LinearOrder α] [IsStrictOrderedRing α] [Archimedean α] :

A linear ordered archimedean ring is a floor ring. This is not an instance because in some cases we have a computable floor function.

Equations
@[instance 100]

A linear ordered field that is a floor ring is archimedean.