Documentation

Carleson.ToMathlib.RealInterpolation.InterpolatedExponents

Results about working with (interpolated) exponents #

This files contains convenience results for working with interpolated exponents, as well as results about a particular choice of exponent that we will use for the proof of the real interpolation theorem.

theorem ENNReal.mem_sub_Ioo {q r : ENNReal} (hr : r ) (hq : q Set.Ioo 0 r) :
r - q Set.Ioo 0 r
theorem ENNReal.sub_toReal_of_le {t : ENNReal} (ht : t 1) :
1 - t.toReal = (1 - t).toReal
theorem ENNReal.sub_sub_toReal_of_le {t : ENNReal} (ht : t 1) :
t.toReal = 1 - (1 - t).toReal
theorem ENNReal.one_sub_one_sub_eq {t : ENNReal} (ht : t Set.Ioo 0 1) :
1 - (1 - t) = t
theorem ENNReal.one_le_toReal {a : ENNReal} (ha₁ : 1 a) (ha₂ : a < ) :
theorem ENNReal.coe_rpow_ne_top {a q : } (hq : 0 q) :
theorem ENNReal.coe_rpow_ne_top' {a q : } (hq : 0 < q) :
theorem ENNReal.coe_pow_pos {a q : } (ha : 0 < a) :
theorem ENNReal.rpow_ne_top' {a : ENNReal} {q : } (ha : a 0) (ha' : a ) :
a ^ q
theorem ENNReal.exp_toReal_pos' {q : ENNReal} (hq : 1 q) (hq' : q < ) :
0 < q.toReal
theorem ENNReal.ne_top_of_Ico {p q r : ENNReal} (hq : q Set.Ico p r) :
theorem ENNReal.lt_top_of_Ico {p q r : ENNReal} (hq : q Set.Ico p r) :
q <
theorem ENNReal.ne_top_of_Ioo {p q r : ENNReal} (hq : q Set.Ioo p r) :
theorem ENNReal.lt_top_of_Ioo {p q r : ENNReal} (hq : q Set.Ioo p r) :
q <
theorem ENNReal.ne_top_of_Ioc {p q r : ENNReal} (hq : q Set.Ioc p r) (hr : r < ) :
theorem ENNReal.pos_of_rb_Ioc {p q r : ENNReal} (hr : q Set.Ioc p r) :
0 < r
theorem ENNReal.pos_of_Ioo {p q r : ENNReal} (hq : q Set.Ioo p r) :
0 < q
theorem ENNReal.ne_zero_of_Ioo {p q r : ENNReal} (hq : q Set.Ioo p r) :
q 0
theorem ENNReal.pos_of_Icc_1 {p q : ENNReal} (hp : p Set.Icc 1 q) :
0 < p
theorem ENNReal.pos_of_ge_1 {p : ENNReal} (hp : 1 p) :
0 < p
theorem ENNReal.pos_rb_of_Icc_1_inh {p q : ENNReal} (hp : p Set.Icc 1 q) :
0 < q
theorem ENNReal.toReal_pos_of_Ioo {q p r : ENNReal} (hp : p Set.Ioo q r) :
0 < p.toReal
theorem ENNReal.toReal_ne_zero_of_Ioo {q p r : ENNReal} (hp : p Set.Ioo q r) :
theorem ENNReal.eq_of_rpow_eq (a b : ENNReal) (c : ) (hc : c 0) (h : a ^ c = b ^ c) :
a = b
theorem ENNReal.le_of_rpow_le {a b : ENNReal} {c : } (hc : 0 < c) (h : a ^ c b ^ c) :
a b
theorem ENNReal.coe_inv_exponent {p₀ : ENNReal} (hp₀ : 0 < p₀) :

Convenience results for working with (interpolated) exponents #

theorem ComputationsInterpolatedExponents.ENNReal_preservation_positivity' {p₀ p₁ p t : ENNReal} (hp₀ : 0 < p₀) (hp₁ : 0 < p₁) (ht : t ) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) :
0 < p
theorem ComputationsInterpolatedExponents.interp_exp_ne_top {p₀ p₁ p t : ENNReal} (hp₀p₁ : p₀ p₁) (ht : t Set.Ioo 0 1) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) :
theorem ComputationsInterpolatedExponents.interp_exp_ne_top' {p₀ p₁ p t : ENNReal} (hp₀p₁ : p₀ p₁ ) (ht : t Set.Ioo 0 1) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) :
theorem ComputationsInterpolatedExponents.interp_exp_eq {p₀ p₁ p t : ENNReal} (hp₀p₁ : p₀ = p₁) (ht : t Set.Ioo 0 1) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) :
p₀ = p
theorem ComputationsInterpolatedExponents.interp_exp_lt_top {p₀ p₁ p t : ENNReal} (hp₀p₁ : p₀ p₁) (ht : t Set.Ioo 0 1) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) :
p <
theorem ComputationsInterpolatedExponents.interp_exp_lt_top' {p₀ p₁ p t : ENNReal} (hp₀p₁ : p₀ p₁ ) (ht : t Set.Ioo 0 1) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) :
p <
theorem ComputationsInterpolatedExponents.interp_exp_between {p₀ p₁ p t : ENNReal} (hp₀ : 0 < p₀) (hp₁ : 0 < p₁) (hp₀p₁ : p₀ < p₁) (ht : t Set.Ioo 0 1) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) :
p Set.Ioo p₀ p₁
theorem ComputationsInterpolatedExponents.one_le_interp_exp_aux {p₀ p₁ p t : ENNReal} (hp₀ : 1 p₀) (hp₁ : 1 p₁) (hp₀p₁ : p₀ < p₁) (ht : t Set.Ioo 0 1) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) :
1 p
theorem ComputationsInterpolatedExponents.switch_exponents {p₀ p₁ p t : ENNReal} (ht : t Set.Ioo 0 1) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) :
p⁻¹ = (1 - (1 - t)) * p₁⁻¹ + (1 - t) * p₀⁻¹
theorem ComputationsInterpolatedExponents.one_le_interp {p₀ p₁ p t : ENNReal} (hp₀ : 1 p₀) (hp₁ : 1 p₁) (hp₀p₁ : p₀ p₁) (ht : t Set.Ioo 0 1) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) :
1 p
theorem ComputationsInterpolatedExponents.one_le_interp_toReal {p₀ p₁ p t : ENNReal} (hp₀ : 1 p₀) (hp₁ : 1 p₁) (hp₀p₁ : p₀ p₁) (ht : t Set.Ioo 0 1) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) :
theorem ComputationsInterpolatedExponents.inv_of_interpolated_pos' {p₀ p₁ p t : ENNReal} (hp₀p₁ : p₀ p₁) (ht : t Set.Ioo 0 1) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) :
0 < p⁻¹
theorem ComputationsInterpolatedExponents.interpolated_pos' {p₀ p₁ p t : ENNReal} (hp₀ : 0 < p₀) (hp₁ : 0 < p₁) (ht : t ) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) :
0 < p
theorem ComputationsInterpolatedExponents.exp_toReal_pos {p₀ : ENNReal} (hp₀ : 0 < p₀) (hp₀' : p₀ ) :
0 < p₀.toReal
theorem ComputationsInterpolatedExponents.interp_exp_in_Ioo_zero_top {p₀ p₁ p t : ENNReal} (ht : t Set.Ioo 0 1) (hp₀ : 0 < p₀) (hp₁ : 0 < p₁) (hp₀p₁ : p₀ p₁ ) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) :
theorem ComputationsInterpolatedExponents.inv_toReal_pos_of_ne_top {p₀ : ENNReal} (hp₀ : 0 < p₀) (hp' : p₀ ) :
0 < p₀⁻¹.toReal
theorem ComputationsInterpolatedExponents.interp_exp_toReal_pos {p₀ p₁ p t : ENNReal} (ht : t Set.Ioo 0 1) (hp₀ : 0 < p₀) (hp₁ : 0 < p₁) (hp₀p₁ : p₀ p₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) :
0 < p.toReal
theorem ComputationsInterpolatedExponents.interp_exp_toReal_pos' {p₀ p₁ p t : ENNReal} (ht : t Set.Ioo 0 1) (hp₀ : 0 < p₀) (hp₁ : 0 < p₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) (hp₀p₁ : p₀ p₁ ) :
0 < p.toReal
theorem ComputationsInterpolatedExponents.interp_exp_inv_pos {p₀ p₁ p t : ENNReal} (ht : t Set.Ioo 0 1) (hp₀ : 0 < p₀) (hp₁ : 0 < p₁) (hp₀p₁ : p₀ p₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) :
theorem ComputationsInterpolatedExponents.interp_exp_inv_ne_zero {p₀ p₁ p t : ENNReal} (ht : t Set.Ioo 0 1) (hp₀ : 0 < p₀) (hp₁ : 0 < p₁) (hp₀p₁ : p₀ p₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) :
theorem ComputationsInterpolatedExponents.preservation_interpolation {p₀ p₁ p t : ENNReal} (ht : t Set.Ioo 0 1) (hp₀ : 0 < p₀) (hp₁ : 0 < p₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) :
theorem ComputationsInterpolatedExponents.preservation_positivity_inv_toReal {p₀ p₁ t : ENNReal} (ht : t Set.Ioo 0 1) (hp₀ : 0 < p₀) (hp₁ : 0 < p₁) (hp₀p₁ : p₀ p₁) :
0 < (1 - t.toReal) * p₀⁻¹.toReal + t.toReal * p₁⁻¹.toReal
theorem ComputationsInterpolatedExponents.ne_inv_toReal_exponents {p₀ p₁ : ENNReal} (hp₀ : 0 < p₀) (hp₁ : 0 < p₁) (hp₀p₁ : p₀ p₁) :
theorem ComputationsInterpolatedExponents.ne_inv_toReal_exp_interp_exp {p₀ p₁ p t : ENNReal} (ht : t Set.Ioo 0 1) (hp₀ : 0 < p₀) (hp₁ : 0 < p₁) (hp₀p₁ : p₀ p₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) :
theorem ComputationsInterpolatedExponents.ne_sub_toReal_exp {p₀ p₁ : ENNReal} (hp₀ : 0 < p₀) (hp₁ : 0 < p₁) (hp₀p₁ : p₀ p₁) :
theorem ComputationsInterpolatedExponents.ne_toReal_exp_interp_exp {p₀ p₁ p t : ENNReal} (ht : t Set.Ioo 0 1) (hp₀ : 0 < p₀) (hp₁ : 0 < p₁) (hp₀p₁ : p₀ p₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) :
theorem ComputationsInterpolatedExponents.ne_toReal_exp_interp_exp₁ {p₀ p₁ p t : ENNReal} (ht : t Set.Ioo 0 1) (hp₀ : 0 < p₀) (hp₁ : 0 < p₁) (hp₀p₁ : p₀ p₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) :
theorem ComputationsInterpolatedExponents.ofReal_inv_interp_sub_exp_pos₁ {q₀ q₁ q t : ENNReal} (ht : t Set.Ioo 0 1) (hq₀ : 0 < q₀) (hq₁ : 0 < q₁) (hq₀q₁ : q₀ q₁) (hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹) :
theorem ComputationsInterpolatedExponents.ofReal_inv_interp_sub_exp_pos₀ {q₀ q₁ q t : ENNReal} (ht : t Set.Ioo 0 1) (hq₀ : 0 < q₀) (hq₁ : 0 < q₁) (hq₀q₁ : q₀ q₁) (hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹) :
theorem ComputationsInterpolatedExponents.exp_lt_iff {p₀ p₁ p t : ENNReal} (ht : t Set.Ioo 0 1) (hp₀ : 0 < p₀) (hp₁ : 0 < p₁) (hp₀p₁ : p₀ p₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) :
p < p₀ p₁ < p₀
theorem ComputationsInterpolatedExponents.exp_gt_iff {p₀ p₁ p t : ENNReal} (ht : t Set.Ioo 0 1) (hp₀ : 0 < p₀) (hp₁ : 0 < p₁) (hp₀p₁ : p₀ p₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) :
p₀ < p p₀ < p₁
theorem ComputationsInterpolatedExponents.exp_lt_exp_gt_iff {p₀ p₁ p t : ENNReal} (ht : t Set.Ioo 0 1) (hp₀ : 0 < p₀) (hp₁ : 0 < p₁) (hp₀p₁ : p₀ p₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) :
p < p₀ p₁ < p
theorem ComputationsInterpolatedExponents.exp_gt_exp_lt_iff {p₀ p₁ p t : ENNReal} (ht : t Set.Ioo 0 1) (hp₀ : 0 < p₀) (hp₁ : 0 < p₁) (hp₀p₁ : p₀ p₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) :
p₀ < p p < p₁
theorem ComputationsInterpolatedExponents.exp_lt_iff₁ {p₀ p₁ p t : ENNReal} (ht : t Set.Ioo 0 1) (hp₀ : 0 < p₀) (hp₁ : 0 < p₁) (hp₀p₁ : p₀ p₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) :
p < p₁ p₀ < p₁
theorem ComputationsInterpolatedExponents.exp_gt_iff₁ {p₀ p₁ p t : ENNReal} (ht : t Set.Ioo 0 1) (hp₀ : 0 < p₀) (hp₁ : 0 < p₁) (hp₀p₁ : p₀ p₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) :
p₁ < p p₁ < p₀

Results about the particular choice of exponent #

The proof of the real interpolation theorem will estimate
`distribution (trunc f A(t)) t` and `distribution (truncCompl f A(t)) t` for a
function `A`. The function `A` can be given a closed-form expression that works for
_all_ cases in the real interpolation theorem, because of the computation rules available
for elements in `ℝ≥0∞` that avoid the need for a limiting procedure, e.g. `⊤⁻¹ = 0`.

The function `A` will be of the form `A(t) = (t / d) ^ σ` for particular choices of `d` and
`σ`. This section contatins results about the exponents `σ`.
def ComputationsChoiceExponent.ζ (p₀ q₀ p₁ q₁ : ENNReal) (t : ) :
Equations
Instances For
    theorem ComputationsChoiceExponent.ζ_equality₁ {p₀ q₀ p₁ q₁ t : ENNReal} (ht : t Set.Ioo 0 1) :
    ζ p₀ q₀ p₁ q₁ t.toReal = ((1 - t).toReal * p₀⁻¹.toReal + t.toReal * p₁⁻¹.toReal) * ((1 - t).toReal * q₀⁻¹.toReal + t.toReal * q₁⁻¹.toReal - q₀⁻¹.toReal) / (((1 - t).toReal * q₀⁻¹.toReal + t.toReal * q₁⁻¹.toReal) * ((1 - t).toReal * p₀⁻¹.toReal + t.toReal * p₁⁻¹.toReal - p₀⁻¹.toReal))
    theorem ComputationsChoiceExponent.ζ_equality₂ {p₀ q₀ p₁ q₁ t : ENNReal} (ht : t Set.Ioo 0 1) :
    ζ p₀ q₀ p₁ q₁ t.toReal = ((1 - t).toReal * p₀⁻¹.toReal + t.toReal * p₁⁻¹.toReal) * ((1 - t).toReal * q₀⁻¹.toReal + t.toReal * q₁⁻¹.toReal - q₁⁻¹.toReal) / (((1 - t).toReal * q₀⁻¹.toReal + t.toReal * q₁⁻¹.toReal) * ((1 - t).toReal * p₀⁻¹.toReal + t.toReal * p₁⁻¹.toReal - p₁⁻¹.toReal))
    theorem ComputationsChoiceExponent.ζ_symm {p₀ q₀ p₁ q₁ t : ENNReal} (ht : t Set.Ioo 0 1) :
    ζ p₀ q₀ p₁ q₁ t.toReal = ζ p₁ q₁ p₀ q₀ (1 - t).toReal
    theorem ComputationsChoiceExponent.ζ_equality₃ {p₀ q₀ p₁ q₁ p q t : ENNReal} (ht : t Set.Ioo 0 1) (hp₀ : 0 < p₀) (hq₀ : 0 < q₀) (hp₁ : 0 < p₁) (hq₁ : 0 < q₁) (hp₀p₁ : p₀ p₁) (hq₀q₁ : q₀ q₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) (hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹) (hp₀' : p₀ ) (hq₀' : q₀ ) :
    ζ p₀ q₀ p₁ q₁ t.toReal = p₀.toReal * (q₀.toReal - q.toReal) / (q₀.toReal * (p₀.toReal - p.toReal))
    theorem ComputationsChoiceExponent.ζ_equality₄ {p₀ q₀ p₁ q₁ p q t : ENNReal} (ht : t Set.Ioo 0 1) (hp₀ : 0 < p₀) (hq₀ : 0 < q₀) (hp₁ : 0 < p₁) (hq₁ : 0 < q₁) (hp₀p₁ : p₀ p₁) (hq₀q₁ : q₀ q₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) (hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹) (hp₁' : p₁ ) (hq₁' : q₁ ) :
    ζ p₀ q₀ p₁ q₁ t.toReal = p₁.toReal * (q₁.toReal - q.toReal) / (q₁.toReal * (p₁.toReal - p.toReal))
    theorem ComputationsChoiceExponent.ζ_equality₅ {p₀ q₀ p₁ q₁ p q t : ENNReal} (ht : t Set.Ioo 0 1) (hp₀ : 0 < p₀) (hq₀ : 0 < q₀) (hp₁ : 0 < p₁) (hq₁ : 0 < q₁) (hp₀p₁ : p₀ p₁) (hq₀q₁ : q₀ q₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) (hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹) (hp₀' : p₀ ) (hq₀' : q₀ ) :
    p₀.toReal + (ζ p₀ q₀ p₁ q₁ t.toReal)⁻¹ * (q.toReal - q₀.toReal) * (p₀.toReal / q₀.toReal) = p.toReal
    theorem ComputationsChoiceExponent.ζ_equality₆ {p₀ q₀ p₁ q₁ p q t : ENNReal} (ht : t Set.Ioo 0 1) (hp₀ : 0 < p₀) (hq₀ : 0 < q₀) (hp₁ : 0 < p₁) (hq₁ : 0 < q₁) (hp₀p₁ : p₀ p₁) (hq₀q₁ : q₀ q₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) (hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹) (hp₁' : p₁ ) (hq₁' : q₁ ) :
    p₁.toReal + (ζ p₀ q₀ p₁ q₁ t.toReal)⁻¹ * (q.toReal - q₁.toReal) * (p₁.toReal / q₁.toReal) = p.toReal
    theorem ComputationsChoiceExponent.ζ_equality₇ {p₀ q₀ p₁ q₁ p q t : ENNReal} (ht : t Set.Ioo 0 1) (hp₀ : 0 < p₀) (hq₀ : 0 < q₀) (hp₁ : 0 < p₁) (hq₁ : 0 < q₁) (hp₀p₁ : p₀ p₁) (hq₀q₁ : q₀ q₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) (hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹) (hp₀' : p₀ ) (hq₀' : q₀ = ) :
    ζ p₀ q₀ p₁ q₁ t.toReal = p₀.toReal / (p₀.toReal - p.toReal)
    theorem ComputationsChoiceExponent.ζ_equality₈ {p₀ q₀ p₁ q₁ p q t : ENNReal} (ht : t Set.Ioo 0 1) (hp₀ : 0 < p₀) (hq₀ : 0 < q₀) (hp₁ : 0 < p₁) (hq₁ : 0 < q₁) (hp₀p₁ : p₀ p₁) (hq₀q₁ : q₀ q₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) (hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹) (hp₁' : p₁ ) (hq₁' : q₁ = ) :
    ζ p₀ q₀ p₁ q₁ t.toReal = p₁.toReal / (p₁.toReal - p.toReal)
    theorem ComputationsChoiceExponent.ζ_eq_top_top {p₀ q₀ p₁ q₁ p q t : ENNReal} (ht : t Set.Ioo 0 1) (hp₀ : 0 < p₀) (hq₀ : 0 < q₀) (hp₁ : 0 < p₁) (hq₁ : 0 < q₁) (hp₀p₁ : p₀ p₁) (hq₀q₁ : q₀ q₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) (hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹) (hp₁' : p₁ = ) (hq₁' : q₁ = ) :
    ζ p₀ q₀ p₁ q₁ t.toReal = 1
    theorem ComputationsChoiceExponent.ζ_pos_iff_aux {p₀ q₀ p q : ENNReal} (hp₀ : 0 < p₀) (hq₀ : 0 < q₀) (hp₀' : p₀ ) (hq₀' : q₀ ) :
    0 < p₀.toReal * (q₀.toReal - q.toReal) / (q₀.toReal * (p₀.toReal - p.toReal)) q.toReal < q₀.toReal p.toReal < p₀.toReal q₀.toReal < q.toReal p₀.toReal < p.toReal
    theorem ComputationsChoiceExponent.preservation_inequality {p₀ p₁ p t : ENNReal} (ht : t Set.Ioo 0 1) (hp₀p₁ : p₀ p₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) (hp₀' : p₀ ) :
    p.toReal < p₀.toReal p < p₀
    theorem ComputationsChoiceExponent.preservation_inequality' {p₀ p₁ p t : ENNReal} (ht : t Set.Ioo 0 1) (hp₀p₁ : p₀ p₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) (hp₀' : p₀ ) :
    p₀.toReal < p.toReal p₀ < p
    theorem ComputationsChoiceExponent.preservation_inequality_of_lt₀ {q₀ q₁ q t : ENNReal} (ht : t Set.Ioo 0 1) (hq₀ : 0 < q₀) (hq₁ : 0 < q₁) (hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹) (hq₀q₁ : q₀ < q₁) :
    q₀.toReal < q.toReal
    theorem ComputationsChoiceExponent.preservation_inequality_of_lt₁ {q₀ q₁ q t : ENNReal} (ht : t Set.Ioo 0 1) (hq₀ : 0 < q₀) (hq₁ : 0 < q₁) (hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹) (hq₀q₁ : q₀ < q₁) (hq₁' : q₁ ) :
    q.toReal < q₁.toReal
    theorem ComputationsChoiceExponent.ζ_pos_toReal_iff₀ {p₀ q₀ p₁ q₁ p q t : ENNReal} (ht : t Set.Ioo 0 1) (hp₀ : 0 < p₀) (hq₀ : 0 < q₀) (hp₁ : 0 < p₁) (hq₁ : 0 < q₁) (hp₀p₁ : p₀ p₁) (hq₀q₁ : q₀ q₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) (hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹) (hp₀' : p₀ ) (hq₀' : q₀ ) :
    0 < ζ p₀ q₀ p₁ q₁ t.toReal q.toReal < q₀.toReal p.toReal < p₀.toReal q₀.toReal < q.toReal p₀.toReal < p.toReal
    theorem ComputationsChoiceExponent.ζ_pos_toReal_iff₁ {p₀ q₀ p₁ q₁ p q t : ENNReal} (ht : t Set.Ioo 0 1) (hp₀ : 0 < p₀) (hq₀ : 0 < q₀) (hp₁ : 0 < p₁) (hq₁ : 0 < q₁) (hp₀p₁ : p₀ p₁) (hq₀q₁ : q₀ q₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) (hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹) (hp₁' : p₁ ) (hq₁' : q₁ ) :
    0 < ζ p₀ q₀ p₁ q₁ t.toReal q.toReal < q₁.toReal p.toReal < p₁.toReal q₁.toReal < q.toReal p₁.toReal < p.toReal
    theorem ComputationsChoiceExponent.ζ_pos_iff_aux₀ {p₀ q₀ p₁ q₁ t : ENNReal} (ht : t Set.Ioo 0 1) (hp₀ : 0 < p₀) (hq₀ : 0 < q₀) (hp₁ : 0 < p₁) (hq₁ : 0 < q₁) (hp₀p₁ : p₀ p₁) (hq₀q₁ : q₀ q₁) :
    0 < ζ p₀ q₀ p₁ q₁ t.toReal q₀⁻¹.toReal < q₁⁻¹.toReal p₀⁻¹.toReal < p₁⁻¹.toReal q₁⁻¹.toReal < q₀⁻¹.toReal p₁⁻¹.toReal < p₀⁻¹.toReal
    theorem ComputationsChoiceExponent.inv_toReal_iff {p₀ p₁ : ENNReal} (hp₀ : 0 < p₀) (hp₁ : 0 < p₁) :
    p₀⁻¹.toReal < p₁⁻¹.toReal p₁ < p₀
    theorem ComputationsChoiceExponent.ζ_pos_iff {p₀ q₀ p₁ q₁ t : ENNReal} (ht : t Set.Ioo 0 1) (hp₀ : 0 < p₀) (hq₀ : 0 < q₀) (hp₁ : 0 < p₁) (hq₁ : 0 < q₁) (hp₀p₁ : p₀ p₁) (hq₀q₁ : q₀ q₁) :
    0 < ζ p₀ q₀ p₁ q₁ t.toReal q₁ < q₀ p₁ < p₀ q₀ < q₁ p₀ < p₁
    theorem ComputationsChoiceExponent.ζ_pos_iff' {p₀ q₀ p₁ q₁ p q t : ENNReal} (ht : t Set.Ioo 0 1) (hp₀ : 0 < p₀) (hq₀ : 0 < q₀) (hp₁ : 0 < p₁) (hq₁ : 0 < q₁) (hp₀p₁ : p₀ p₁) (hq₀q₁ : q₀ q₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) (hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹) :
    0 < ζ p₀ q₀ p₁ q₁ t.toReal q < q₀ p < p₀ q₀ < q p₀ < p
    theorem ComputationsChoiceExponent.ζ_pos_iff_of_lt₀ {p₀ q₀ p₁ q₁ p q t : ENNReal} (ht : t Set.Ioo 0 1) (hp₀ : 0 < p₀) (hq₀ : 0 < q₀) (hp₁ : 0 < p₁) (hq₁ : 0 < q₁) (hq₀q₁ : q₀ q₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) (hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹) (hp₀p₁' : p₀ < p₁) :
    0 < ζ p₀ q₀ p₁ q₁ t.toReal q₀ < q
    theorem ComputationsChoiceExponent.ζ_pos_iff_of_lt₁ {p₀ q₀ p₁ q₁ p q t : ENNReal} (ht : t Set.Ioo 0 1) (hp₀ : 0 < p₀) (hq₀ : 0 < q₀) (hp₁ : 0 < p₁) (hq₁ : 0 < q₁) (hq₀q₁ : q₀ q₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) (hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹) (hp₀p₁' : p₀ < p₁) :
    0 < ζ p₀ q₀ p₁ q₁ t.toReal q < q₁
    theorem ComputationsChoiceExponent.ζ_neg_iff_aux₀ {p₀ q₀ p₁ q₁ t : ENNReal} (ht : t Set.Ioo 0 1) (hp₀ : 0 < p₀) (hq₀ : 0 < q₀) (hp₁ : 0 < p₁) (hq₁ : 0 < q₁) (hp₀p₁ : p₀ p₁) (hq₀q₁ : q₀ q₁) :
    ζ p₀ q₀ p₁ q₁ t.toReal < 0 q₀⁻¹.toReal < q₁⁻¹.toReal p₁⁻¹.toReal < p₀⁻¹.toReal q₁⁻¹.toReal < q₀⁻¹.toReal p₀⁻¹.toReal < p₁⁻¹.toReal
    theorem ComputationsChoiceExponent.ζ_neg_iff {p₀ q₀ p₁ q₁ t : ENNReal} (ht : t Set.Ioo 0 1) (hp₀ : 0 < p₀) (hq₀ : 0 < q₀) (hp₁ : 0 < p₁) (hq₁ : 0 < q₁) (hp₀p₁ : p₀ p₁) (hq₀q₁ : q₀ q₁) :
    ζ p₀ q₀ p₁ q₁ t.toReal < 0 q₁ < q₀ p₀ < p₁ q₀ < q₁ p₁ < p₀
    theorem ComputationsChoiceExponent.ζ_neg_iff' {p₀ q₀ p₁ q₁ p q t : ENNReal} (ht : t Set.Ioo 0 1) (hp₀ : 0 < p₀) (hq₀ : 0 < q₀) (hp₁ : 0 < p₁) (hq₁ : 0 < q₁) (hp₀p₁ : p₀ p₁) (hq₀q₁ : q₀ q₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) (hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹) :
    ζ p₀ q₀ p₁ q₁ t.toReal < 0 q < q₀ p₀ < p q₀ < q p < p₀
    theorem ComputationsChoiceExponent.ζ_neg_iff_of_lt₀ {p₀ q₀ p₁ q₁ p q t : ENNReal} (ht : t Set.Ioo 0 1) (hp₀ : 0 < p₀) (hq₀ : 0 < q₀) (hp₁ : 0 < p₁) (hq₁ : 0 < q₁) (hq₀q₁ : q₀ q₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) (hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹) (hp₀p₁' : p₀ < p₁) :
    ζ p₀ q₀ p₁ q₁ t.toReal < 0 q < q₀
    theorem ComputationsChoiceExponent.ζ_neg_iff_of_lt₁ {p₀ q₀ p₁ q₁ p q t : ENNReal} (ht : t Set.Ioo 0 1) (hp₀ : 0 < p₀) (hq₀ : 0 < q₀) (hp₁ : 0 < p₁) (hq₁ : 0 < q₁) (hq₀q₁ : q₀ q₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) (hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹) (hp₀p₁' : p₀ < p₁) :
    ζ p₀ q₀ p₁ q₁ t.toReal < 0 q₁ < q
    theorem ComputationsChoiceExponent.ζ_neg_iff_aux {p₀ q₀ p q : ENNReal} (hp₀ : 0 < p₀) (hq₀ : 0 < q₀) (hp₀' : p₀ ) (hq₀' : q₀ ) :
    p₀.toReal * (q₀.toReal - q.toReal) / (q₀.toReal * (p₀.toReal - p.toReal)) < 0 q.toReal < q₀.toReal p₀.toReal < p.toReal q₀.toReal < q.toReal p.toReal < p₀.toReal
    theorem ComputationsChoiceExponent.ζ_neg_toReal_iff₀ {p₀ q₀ p₁ q₁ p q t : ENNReal} (ht : t Set.Ioo 0 1) (hp₀ : 0 < p₀) (hq₀ : 0 < q₀) (hp₁ : 0 < p₁) (hq₁ : 0 < q₁) (hp₀p₁ : p₀ p₁) (hq₀q₁ : q₀ q₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) (hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹) (hp₀' : p₀ ) (hq₀' : q₀ ) :
    ζ p₀ q₀ p₁ q₁ t.toReal < 0 q.toReal < q₀.toReal p₀.toReal < p.toReal q₀.toReal < q.toReal p.toReal < p₀.toReal
    theorem ComputationsChoiceExponent.ζ_neg_toReal_iff₁ {p₀ q₀ p₁ q₁ p q t : ENNReal} (ht : t Set.Ioo 0 1) (hp₀ : 0 < p₀) (hq₀ : 0 < q₀) (hp₁ : 0 < p₁) (hq₁ : 0 < q₁) (hp₀p₁ : p₀ p₁) (hq₀q₁ : q₀ q₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) (hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹) (hp₁' : p₁ ) (hq₁' : q₁ ) :
    ζ p₀ q₀ p₁ q₁ t.toReal < 0 q.toReal < q₁.toReal p₁.toReal < p.toReal q₁.toReal < q.toReal p.toReal < p₁.toReal
    theorem ComputationsChoiceExponent.ζ_neg_iff₀ {p₀ q₀ p₁ q₁ p q t : ENNReal} (ht : t Set.Ioo 0 1) (hp₀ : 0 < p₀) (hq₀ : 0 < q₀) (hp₁ : 0 < p₁) (hq₁ : 0 < q₁) (hp₀p₁ : p₀ p₁) (hq₀q₁ : q₀ q₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) (hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹) (hp₀' : p₀ ) (hq₀' : q₀ ) :
    ζ p₀ q₀ p₁ q₁ t.toReal < 0 q < q₀ p₀ < p q₀ < q p < p₀
    theorem ComputationsChoiceExponent.ζ_ne_zero {p₀ q₀ p₁ q₁ t : ENNReal} (ht : t Set.Ioo 0 1) (hp₀ : 0 < p₀) (hq₀ : 0 < q₀) (hp₁ : 0 < p₁) (hq₁ : 0 < q₁) (hp₀p₁ : p₀ p₁) (hq₀q₁ : q₀ q₁) :
    ζ p₀ q₀ p₁ q₁ t.toReal 0
    theorem ComputationsChoiceExponent.ζ_le_zero_iff_of_lt₀ {p₀ q₀ p₁ q₁ p q t : ENNReal} (ht : t Set.Ioo 0 1) (hp₀ : 0 < p₀) (hq₀ : 0 < q₀) (hp₁ : 0 < p₁) (hq₁ : 0 < q₁) (hq₀q₁ : q₀ q₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) (hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹) (hp₀p₁' : p₀ < p₁) :
    ζ p₀ q₀ p₁ q₁ t.toReal 0 q < q₀
    theorem ComputationsChoiceExponent.ζ_le_zero_iff_of_lt₁ {p₀ q₀ p₁ q₁ p q t : ENNReal} (ht : t Set.Ioo 0 1) (hp₀ : 0 < p₀) (hq₀ : 0 < q₀) (hp₁ : 0 < p₁) (hq₁ : 0 < q₁) (hq₀q₁ : q₀ q₁) (hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹) (hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹) (hp₀p₁' : p₀ < p₁) :
    ζ p₀ q₀ p₁ q₁ t.toReal 0 q₁ < q
    theorem ComputationsChoiceExponent.eq_exponents₀ {q₀ q₁ q t : ENNReal} (ht : t Set.Ioo 0 1) (hq₀ : 0 < q₀) (hq₁ : 0 < q₁) (hq₀q₁ : q₀ q₁) (hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹) (hq₀' : q₀ ) :
    q₀.toReal + q₁⁻¹.toReal / (q₁⁻¹.toReal - q₀⁻¹.toReal) * (q.toReal - q₀.toReal) = (1 - t).toReal * q.toReal
    theorem ComputationsChoiceExponent.eq_exponents₂ {p₀ q₀ q₁ q t : ENNReal} (ht : t Set.Ioo 0 1) (hq₀ : 0 < q₀) (hq₁ : 0 < q₁) (hq₀q₁ : q₀ q₁) (hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹) (hq₀' : q₀ ) :
    q₀.toReal / p₀.toReal + p₀⁻¹.toReal * q₁⁻¹.toReal / (q₁⁻¹.toReal - q₀⁻¹.toReal) * (q.toReal - q₀.toReal) = (1 - t).toReal * p₀⁻¹.toReal * q.toReal
    theorem ComputationsChoiceExponent.eq_exponents₁ {q₀ q₁ q t : ENNReal} (ht : t Set.Ioo 0 1) (hq₀ : 0 < q₀) (hq₁ : 0 < q₁) (hq₀q₁ : q₀ q₁) (hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹) (hq₀' : q₀ ) :
    theorem ComputationsChoiceExponent.eq_exponents₃ {q₀ p₁ q₁ q t : ENNReal} (ht : t Set.Ioo 0 1) (hq₀ : 0 < q₀) (hq₁ : 0 < q₁) (hq₀q₁ : q₀ q₁) (hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹) (hq₀' : q₀ ) :
    theorem ComputationsChoiceExponent.eq_exponents₅ {q₀ q₁ q t : ENNReal} (ht : t Set.Ioo 0 1) (hq₀ : 0 < q₀) (hq₁ : 0 < q₁) (hq₀q₁ : q₀ q₁) (hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹) (hq₁' : q₁ ) :
    q₁.toReal + -(q₀⁻¹.toReal / (q₁⁻¹.toReal - q₀⁻¹.toReal) * (q.toReal - q₁.toReal)) = t.toReal * q.toReal
    theorem ComputationsChoiceExponent.eq_exponents₆ {q₀ q₁ q t : ENNReal} (ht : t Set.Ioo 0 1) (hq₀ : 0 < q₀) (hq₁ : 0 < q₁) (hq₀q₁ : q₀ q₁) (hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹) (hq₁' : q₁ ) :
    q₁⁻¹.toReal / (q₁⁻¹.toReal - q₀⁻¹.toReal) * (q.toReal - q₁.toReal) = (1 - t).toReal * q.toReal
    theorem ComputationsChoiceExponent.eq_exponents₇ {q₀ p₁ q₁ q t : ENNReal} (ht : t Set.Ioo 0 1) (hq₀ : 0 < q₀) (hq₁ : 0 < q₁) (hq₀q₁ : q₀ q₁) (hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹) (hq₁' : q₁ ) :
    q₁.toReal / p₁.toReal + -(p₁⁻¹.toReal * q₀⁻¹.toReal / (q₁⁻¹.toReal - q₀⁻¹.toReal) * (q.toReal - q₁.toReal)) = t.toReal * p₁⁻¹.toReal * q.toReal
    theorem ComputationsChoiceExponent.eq_exponents₈ {p₀ q₀ q₁ q t : ENNReal} (ht : t Set.Ioo 0 1) (hq₀ : 0 < q₀) (hq₁ : 0 < q₁) (hq₀q₁ : q₀ q₁) (hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹) (hq₁' : q₁ ) :
    p₀⁻¹.toReal * q₁⁻¹.toReal / (q₁⁻¹.toReal - q₀⁻¹.toReal) * (q.toReal - q₁.toReal) = (1 - t).toReal * p₀⁻¹.toReal * q.toReal