Results about working with (interpolated) exponents #
This files contains convenience results for working with interpolated exponents, as well as results about a particular choice of exponent that we will use for the proof of the real interpolation theorem.
Convenience results for working with (interpolated) exponents #
Results about the particular choice of exponent #
The proof of the real interpolation theorem will estimate
`distribution (trunc f A(t)) t` and `distribution (truncCompl f A(t)) t` for a
function `A`. The function `A` can be given a closed-form expression that works for
_all_ cases in the real interpolation theorem, because of the computation rules available
for elements in `ℝ≥0∞` that avoid the need for a limiting procedure, e.g. `⊤⁻¹ = 0`.
The function `A` will be of the form `A(t) = (t / d) ^ σ` for particular choices of `d` and
`σ`. This section contatins results about the exponents `σ`.
theorem
ComputationsChoiceExponent.ζ_equality₃
{p₀ q₀ p₁ q₁ p q t : ENNReal}
(ht : t ∈ Set.Ioo 0 1)
(hp₀ : 0 < p₀)
(hq₀ : 0 < q₀)
(hp₁ : 0 < p₁)
(hq₁ : 0 < q₁)
(hp₀p₁ : p₀ ≠ p₁)
(hq₀q₁ : q₀ ≠ q₁)
(hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹)
(hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹)
(hp₀' : p₀ ≠ ⊤)
(hq₀' : q₀ ≠ ⊤)
:
theorem
ComputationsChoiceExponent.ζ_equality₄
{p₀ q₀ p₁ q₁ p q t : ENNReal}
(ht : t ∈ Set.Ioo 0 1)
(hp₀ : 0 < p₀)
(hq₀ : 0 < q₀)
(hp₁ : 0 < p₁)
(hq₁ : 0 < q₁)
(hp₀p₁ : p₀ ≠ p₁)
(hq₀q₁ : q₀ ≠ q₁)
(hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹)
(hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹)
(hp₁' : p₁ ≠ ⊤)
(hq₁' : q₁ ≠ ⊤)
:
theorem
ComputationsChoiceExponent.ζ_equality₅
{p₀ q₀ p₁ q₁ p q t : ENNReal}
(ht : t ∈ Set.Ioo 0 1)
(hp₀ : 0 < p₀)
(hq₀ : 0 < q₀)
(hp₁ : 0 < p₁)
(hq₁ : 0 < q₁)
(hp₀p₁ : p₀ ≠ p₁)
(hq₀q₁ : q₀ ≠ q₁)
(hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹)
(hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹)
(hp₀' : p₀ ≠ ⊤)
(hq₀' : q₀ ≠ ⊤)
:
theorem
ComputationsChoiceExponent.ζ_equality₆
{p₀ q₀ p₁ q₁ p q t : ENNReal}
(ht : t ∈ Set.Ioo 0 1)
(hp₀ : 0 < p₀)
(hq₀ : 0 < q₀)
(hp₁ : 0 < p₁)
(hq₁ : 0 < q₁)
(hp₀p₁ : p₀ ≠ p₁)
(hq₀q₁ : q₀ ≠ q₁)
(hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹)
(hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹)
(hp₁' : p₁ ≠ ⊤)
(hq₁' : q₁ ≠ ⊤)
:
theorem
ComputationsChoiceExponent.ζ_equality₇
{p₀ q₀ p₁ q₁ p q t : ENNReal}
(ht : t ∈ Set.Ioo 0 1)
(hp₀ : 0 < p₀)
(hq₀ : 0 < q₀)
(hp₁ : 0 < p₁)
(hq₁ : 0 < q₁)
(hp₀p₁ : p₀ ≠ p₁)
(hq₀q₁ : q₀ ≠ q₁)
(hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹)
(hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹)
(hp₀' : p₀ ≠ ⊤)
(hq₀' : q₀ = ⊤)
:
theorem
ComputationsChoiceExponent.ζ_equality₈
{p₀ q₀ p₁ q₁ p q t : ENNReal}
(ht : t ∈ Set.Ioo 0 1)
(hp₀ : 0 < p₀)
(hq₀ : 0 < q₀)
(hp₁ : 0 < p₁)
(hq₁ : 0 < q₁)
(hp₀p₁ : p₀ ≠ p₁)
(hq₀q₁ : q₀ ≠ q₁)
(hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹)
(hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹)
(hp₁' : p₁ ≠ ⊤)
(hq₁' : q₁ = ⊤)
:
theorem
ComputationsChoiceExponent.ζ_eq_top_top
{p₀ q₀ p₁ q₁ p q t : ENNReal}
(ht : t ∈ Set.Ioo 0 1)
(hp₀ : 0 < p₀)
(hq₀ : 0 < q₀)
(hp₁ : 0 < p₁)
(hq₁ : 0 < q₁)
(hp₀p₁ : p₀ ≠ p₁)
(hq₀q₁ : q₀ ≠ q₁)
(hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹)
(hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹)
(hp₁' : p₁ = ⊤)
(hq₁' : q₁ = ⊤)
:
theorem
ComputationsChoiceExponent.ζ_pos_toReal_iff₀
{p₀ q₀ p₁ q₁ p q t : ENNReal}
(ht : t ∈ Set.Ioo 0 1)
(hp₀ : 0 < p₀)
(hq₀ : 0 < q₀)
(hp₁ : 0 < p₁)
(hq₁ : 0 < q₁)
(hp₀p₁ : p₀ ≠ p₁)
(hq₀q₁ : q₀ ≠ q₁)
(hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹)
(hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹)
(hp₀' : p₀ ≠ ⊤)
(hq₀' : q₀ ≠ ⊤)
:
theorem
ComputationsChoiceExponent.ζ_pos_toReal_iff₁
{p₀ q₀ p₁ q₁ p q t : ENNReal}
(ht : t ∈ Set.Ioo 0 1)
(hp₀ : 0 < p₀)
(hq₀ : 0 < q₀)
(hp₁ : 0 < p₁)
(hq₁ : 0 < q₁)
(hp₀p₁ : p₀ ≠ p₁)
(hq₀q₁ : q₀ ≠ q₁)
(hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹)
(hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹)
(hp₁' : p₁ ≠ ⊤)
(hq₁' : q₁ ≠ ⊤)
:
theorem
ComputationsChoiceExponent.ζ_neg_toReal_iff₀
{p₀ q₀ p₁ q₁ p q t : ENNReal}
(ht : t ∈ Set.Ioo 0 1)
(hp₀ : 0 < p₀)
(hq₀ : 0 < q₀)
(hp₁ : 0 < p₁)
(hq₁ : 0 < q₁)
(hp₀p₁ : p₀ ≠ p₁)
(hq₀q₁ : q₀ ≠ q₁)
(hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹)
(hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹)
(hp₀' : p₀ ≠ ⊤)
(hq₀' : q₀ ≠ ⊤)
:
theorem
ComputationsChoiceExponent.ζ_neg_toReal_iff₁
{p₀ q₀ p₁ q₁ p q t : ENNReal}
(ht : t ∈ Set.Ioo 0 1)
(hp₀ : 0 < p₀)
(hq₀ : 0 < q₀)
(hp₁ : 0 < p₁)
(hq₁ : 0 < q₁)
(hp₀p₁ : p₀ ≠ p₁)
(hq₀q₁ : q₀ ≠ q₁)
(hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹)
(hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹)
(hp₁' : p₁ ≠ ⊤)
(hq₁' : q₁ ≠ ⊤)
:
theorem
ComputationsChoiceExponent.ζ_neg_iff₀
{p₀ q₀ p₁ q₁ p q t : ENNReal}
(ht : t ∈ Set.Ioo 0 1)
(hp₀ : 0 < p₀)
(hq₀ : 0 < q₀)
(hp₁ : 0 < p₁)
(hq₁ : 0 < q₁)
(hp₀p₁ : p₀ ≠ p₁)
(hq₀q₁ : q₀ ≠ q₁)
(hp : p⁻¹ = (1 - t) * p₀⁻¹ + t * p₁⁻¹)
(hq : q⁻¹ = (1 - t) * q₀⁻¹ + t * q₁⁻¹)
(hp₀' : p₀ ≠ ⊤)
(hq₀' : q₀ ≠ ⊤)
: