Documentation

Carleson.ToMathlib.MeasureTheory.Integral.Periodic

theorem AddCircle.liftIoc_ae_eq_liftIco {B : Type u_1} {T a : } [hT : Fact (0 < T)] (f : B) :
theorem AddCircle.measurable_equivIoc (T : ) [hT : Fact (0 < T)] (a : ) :
theorem AddCircle.measurable_equivIco (T : ) [hT : Fact (0 < T)] (a : ) :
noncomputable def AddCircle.measurableEquivIoc' (T : ) [hT : Fact (0 < T)] (a : ) :
AddCircle T ≃ᵐ (Set.Ioc a (a + T))
Equations
Instances For
    noncomputable def AddCircle.measurableEquivIco' (T : ) [hT : Fact (0 < T)] (a : ) :
    AddCircle T ≃ᵐ (Set.Ico a (a + T))
    Equations
    Instances For
      theorem MeasureTheory.AEMeasurable.liftIoc {E : Type u_1} (T a : ) [hT : Fact (0 < T)] {f : E} [MeasurableSpace E] (hf : AEMeasurable f volume) :
      theorem MeasureTheory.AEMeasurable.liftIco {E : Type u_1} (T a : ) [hT : Fact (0 < T)] {f : E} [MeasurableSpace E] (hf : AEMeasurable f volume) :
      theorem AddCircle.liftIco_convolution_liftIco {𝕜 : Type u_1} {E : Type u_2} {E' : Type u_3} {F : Type u_4} [NormedAddCommGroup E] [NormedAddCommGroup E'] [NormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 E'] [NormedSpace 𝕜 F] [NormedSpace F] (L : E →L[𝕜] E' →L[𝕜] F) {f : E} {g : E'} {T : } [hT : Fact (0 < T)] (a : ) (hf : Function.Periodic f T) (hg : Function.Periodic g T) :
      MeasureTheory.convolution (liftIco T a f) (liftIco T a g) L MeasureTheory.volume = liftIco T a fun (x : ) => (y : ) in a..a + T, (L (f y)) (g (x - y))
      theorem AddCircle.liftIoc_convolution_liftIoc {𝕜 : Type u_1} {E : Type u_2} {E' : Type u_3} {F : Type u_4} [NormedAddCommGroup E] [NormedAddCommGroup E'] [NormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 E'] [NormedSpace 𝕜 F] [NormedSpace F] (L : E →L[𝕜] E' →L[𝕜] F) {f : E} {g : E'} {T : } [hT : Fact (0 < T)] (a : ) (hf : Function.Periodic f T) (hg : Function.Periodic g T) :
      MeasureTheory.convolution (liftIoc T a f) (liftIoc T a g) L MeasureTheory.volume = liftIoc T a fun (x : ) => (y : ) in a..a + T, (L (f y)) (g (x - y))

      The norm of the lift of a function f is equal to the norm of f on that period.

      The norm of the lift of a function f is equal to the norm of f on that period.

      The norm of the lift of a periodic function f is equal to the norm of f on any period.

      The norm of the lift of a periodic function f is equal to the norm of f on any period.