@[instance 100]
instance
MeasureTheory.Measure.IsHaarMeasure.isInvInvariant_of_isMulRightInvariant
{G : Type u_1}
[TopologicalSpace G]
[Group G]
[IsTopologicalGroup G]
[MeasurableSpace G]
[BorelSpace G]
(μ : Measure G)
[μ.IsHaarMeasure]
[LocallyCompactSpace G]
[μ.IsMulRightInvariant]
[μ.Regular]
:
Any regular bi-invariant Haar measure is invariant under inversion.
@[instance 100]
instance
MeasureTheory.Measure.IsAddHaarMeasure.isNegInvariant_of_isAddRightInvariant
{G : Type u_1}
[TopologicalSpace G]
[AddGroup G]
[IsTopologicalAddGroup G]
[MeasurableSpace G]
[BorelSpace G]
(μ : Measure G)
[μ.IsAddHaarMeasure]
[LocallyCompactSpace G]
[μ.IsAddRightInvariant]
[μ.Regular]
:
Any regular bi-invariant additive Haar measure is invariant under negation.
@[instance 100]
instance
MeasureTheory.Measure.IsHaarMeasure.isInvInvariant_of_regular'
{G : Type u_2}
[CommGroup G]
[TopologicalSpace G]
[IsTopologicalGroup G]
[MeasurableSpace G]
[BorelSpace G]
(μ : Measure G)
[μ.IsHaarMeasure]
[LocallyCompactSpace G]
[μ.Regular]
:
Any regular Haar measure is invariant under inversion in an abelian group.
@[instance 100]
instance
MeasureTheory.Measure.IsAddHaarMeasure.isNegInvariant_of_regular'
{G : Type u_2}
[AddCommGroup G]
[TopologicalSpace G]
[IsTopologicalAddGroup G]
[MeasurableSpace G]
[BorelSpace G]
(μ : Measure G)
[μ.IsAddHaarMeasure]
[LocallyCompactSpace G]
[μ.Regular]
:
Any regular additive Haar measure is invariant under negation in an abelian group.