theorem
linearized_metric_carleson
{X : Type u_1}
{a : ℕ}
[MetricSpace X]
[MeasureTheory.DoublingMeasure X ↑(defaultA a)]
{q q' : ℝ}
{F G : Set X}
{K : X → X → ℂ}
[CompatibleFunctions ℝ X (defaultA a)]
[IsCancellative X (defaultτ a)]
[IsOneSidedKernel a K]
(ha : 4 ≤ a)
(hq : q ∈ Set.Ioc 1 2)
(hqq' : q.IsConjExponent q')
(Q : MeasureTheory.SimpleFunc X (Θ X))
{θ : Θ X}
(hF : MeasurableSet F)
(hG : MeasurableSet G)
(hT :
MeasureTheory.HasBoundedStrongType
(fun (x1 : X → ℂ) (x2 : X) => (linearizedNontangentialOperator (⇑Q) θ K x1 x2).toReal) 2 2 MeasureTheory.volume
MeasureTheory.volume (C_Ts ↑a))
(f : X → ℂ)
(hmf : Measurable f)
(hf : ∀ (x : X), ‖f x‖ ≤ F.indicator 1 x)
:
∫⁻ (x : X) in G, linearizedCarlesonOperator (⇑Q) K f x ≤ ENNReal.ofReal (C1_0_3 a q) * MeasureTheory.volume G ^ q'⁻¹ * MeasureTheory.volume F ^ q⁻¹