Minimal and maximal layers of a set #
This file defines Set.minLayer and Set.maxLayer as the sets obtained from iterated application
of Minimal/Maximal on a set, excluding earlier layers.
Main declarations #
Set.minLayer(Set.maxLayer): thenth minimal (maximal) layer of the given setA.Set.pairwiseDisjoint_minLayer(Set.pairwiseDisjoint_maxLayer),Set.isAntichain_minLayer(Set.isAntichain_maxLayer): minimal (maximal) layers are pairwise disjoint antichains.Set.iUnion_minLayer_iff_bounded_series: if the length ofLTSeriesinAis bounded,Aequals the union of itsminLayers up ton.
The nth maximal layer of A.
Instances For
The elements above A's n minimal layers.
Instances For
The elements below A's n maximal layers.
Instances For
theorem
Set.disjoint_minLayer_of_ne
{α : Type u_1}
[PartialOrder α]
{A : Set α}
{m n : ℕ}
(h : m ≠ n)
:
theorem
Set.disjoint_maxLayer_of_ne
{α : Type u_1}
[PartialOrder α]
{A : Set α}
{m n : ℕ}
(h : m ≠ n)
:
theorem
Set.isAntichain_minLayer
{α : Type u_1}
[PartialOrder α]
{A : Set α}
{n : ℕ}
:
IsAntichain (fun (x1 x2 : α) => x1 ≤ x2) (A.minLayer n)
theorem
Set.isAntichain_maxLayer
{α : Type u_1}
[PartialOrder α]
{A : Set α}
{n : ℕ}
:
IsAntichain (fun (x1 x2 : α) => x1 ≤ x2) (A.maxLayer n)
theorem
Set.exists_le_in_layersAbove_of_le
{α : Type u_1}
[PartialOrder α]
{A : Set α}
{m n : ℕ}
{a : α}
[Fintype α]
(ha : a ∈ A.layersAbove n)
(hm : m ≤ n)
:
theorem
Set.exists_le_in_layersBelow_of_le
{α : Type u_1}
[PartialOrder α]
{A : Set α}
{m n : ℕ}
{a : α}
[Fintype α]
(ha : a ∈ A.layersBelow n)
(hm : m ≤ n)
: