Minimal and maximal layers of a set #
This file defines Set.minLayer
and Set.maxLayer
as the sets obtained from iterated application
of minimals
/maximals
on a set, excluding earlier layers.
Main declarations #
Set.minLayer
(Set.maxLayer
): Then
th minimal (maximal) layer of the given setA
.Set.pairwiseDisjoint_minLayer
(Set.pairwiseDisjoint_maxLayer
),Set.isAntichain_minLayer
(Set.isAntichain_maxLayer
): minimal (maximal) layers are pairwise disjoint antichains.Set.iUnion_minLayer_iff_bounded_series
: if the length ofLTSeries
inA
is bounded,A
equals the union of itsminLayer
s up ton
.
theorem
Set.layersAbove_subset
{α : Type u_1}
[PartialOrder α]
{A : Set α}
{n : ℕ}
:
A.layersAbove n ⊆ A
theorem
Set.layersBelow_subset
{α : Type u_1}
[PartialOrder α]
{A : Set α}
{n : ℕ}
:
A.layersBelow n ⊆ A
theorem
Set.disjoint_minLayer_of_ne
{α : Type u_1}
[PartialOrder α]
{A : Set α}
{m n : ℕ}
(h : m ≠ n)
:
Disjoint (A.minLayer m) (A.minLayer n)
theorem
Set.disjoint_maxLayer_of_ne
{α : Type u_1}
[PartialOrder α]
{A : Set α}
{m n : ℕ}
(h : m ≠ n)
:
Disjoint (A.maxLayer m) (A.maxLayer n)
theorem
Set.pairwiseDisjoint_minLayer
{α : Type u_1}
[PartialOrder α]
{A : Set α}
:
Set.univ.PairwiseDisjoint A.minLayer
theorem
Set.pairwiseDisjoint_maxLayer
{α : Type u_1}
[PartialOrder α]
{A : Set α}
:
Set.univ.PairwiseDisjoint A.maxLayer
theorem
Set.isAntichain_minLayer
{α : Type u_1}
[PartialOrder α]
{A : Set α}
{n : ℕ}
:
IsAntichain (fun (x1 x2 : α) => x1 ≤ x2) (A.minLayer n)
theorem
Set.isAntichain_maxLayer
{α : Type u_1}
[PartialOrder α]
{A : Set α}
{n : ℕ}
:
IsAntichain (fun (x1 x2 : α) => x1 ≤ x2) (A.maxLayer n)
theorem
Set.exists_le_in_minLayer_of_le
{α : Type u_1}
[PartialOrder α]
{A : Set α}
{m n : ℕ}
{a : α}
(ha : a ∈ A.minLayer n)
(hm : m ≤ n)
:
∃ c ∈ A.minLayer m, c ≤ a
theorem
Set.exists_le_in_maxLayer_of_le
{α : Type u_1}
[PartialOrder α]
{A : Set α}
{m n : ℕ}
{a : α}
(ha : a ∈ A.maxLayer n)
(hm : m ≤ n)
:
∃ c ∈ A.maxLayer m, a ≤ c
theorem
Set.minLayer_eq_setOf_height
{α : Type u_1}
[PartialOrder α]
{A : Set α}
{n : ℕ}
:
A.minLayer n = {x : α | ∃ (hx : x ∈ A), Order.height ⟨x, hx⟩ = ↑n}
A.minLayer n
comprises exactly A
's elements of height n
.
theorem
Set.exists_le_in_layersAbove_of_le
{α : Type u_1}
[PartialOrder α]
{A : Set α}
{m n : ℕ}
{a : α}
[Fintype α]
(ha : a ∈ A.layersAbove n)
(hm : m ≤ n)
:
∃ c ∈ A.minLayer m, c ≤ a
theorem
Set.exists_le_in_layersBelow_of_le
{α : Type u_1}
[PartialOrder α]
{A : Set α}
{m n : ℕ}
{a : α}
[Fintype α]
(ha : a ∈ A.layersBelow n)
(hm : m ≤ n)
:
∃ c ∈ A.maxLayer m, a ≤ c