Documentation

Carleson.ToMathlib.MinLayer

Minimal and maximal layers of a set #

This file defines Set.minLayer and Set.maxLayer as the sets obtained from iterated application of minimals/maximals on a set, excluding earlier layers.

Main declarations #

@[irreducible]
def Set.minLayer {α : Type u_1} [PartialOrder α] (A : Set α) (n : ) :
Set α

The nth minimal layer of A.

Equations
  • A.minLayer n = {a : α | Minimal (fun (x : α) => x A \ ⋃ (k : ), ⋃ (_ : k < n), A.minLayer k) a}
Instances For
    def Set.maxLayer {α : Type u_1} [PartialOrder α] (A : Set α) (n : ) :
    Set α

    The nth maximal layer of A.

    Equations
    • A.maxLayer n = A.minLayer n
    Instances For
      def Set.layersAbove {α : Type u_1} [PartialOrder α] (A : Set α) (n : ) :
      Set α

      The elements above A's n minimal layers.

      Equations
      • A.layersAbove n = A \ ⋃ (k : ), ⋃ (_ : k n), A.minLayer k
      Instances For
        def Set.layersBelow {α : Type u_1} [PartialOrder α] (A : Set α) (n : ) :
        Set α

        The elements below A's n maximal layers.

        Equations
        • A.layersBelow n = A \ ⋃ (k : ), ⋃ (_ : k n), A.maxLayer k
        Instances For
          theorem Set.maxLayer_def {α : Type u_1} [PartialOrder α] {A : Set α} {n : } :
          A.maxLayer n = {a : α | Maximal (fun (x : α) => x A \ ⋃ (k : ), ⋃ (_ : k < n), A.maxLayer k) a}
          theorem Set.minLayer_subset {α : Type u_1} [PartialOrder α] {A : Set α} {n : } :
          A.minLayer n A
          theorem Set.maxLayer_subset {α : Type u_1} [PartialOrder α] {A : Set α} {n : } :
          A.maxLayer n A
          theorem Set.layersAbove_subset {α : Type u_1} [PartialOrder α] {A : Set α} {n : } :
          A.layersAbove n A
          theorem Set.layersBelow_subset {α : Type u_1} [PartialOrder α] {A : Set α} {n : } :
          A.layersBelow n A
          theorem Set.minLayer_zero {α : Type u_1} [PartialOrder α] {A : Set α} :
          A.minLayer 0 = {a : α | Minimal (fun (x : α) => x A) a}
          theorem Set.maxLayer_zero {α : Type u_1} [PartialOrder α] {A : Set α} :
          A.maxLayer 0 = {a : α | Maximal (fun (x : α) => x A) a}
          theorem Set.disjoint_minLayer_of_ne {α : Type u_1} [PartialOrder α] {A : Set α} {m n : } (h : m n) :
          Disjoint (A.minLayer m) (A.minLayer n)
          theorem Set.disjoint_maxLayer_of_ne {α : Type u_1} [PartialOrder α] {A : Set α} {m n : } (h : m n) :
          Disjoint (A.maxLayer m) (A.maxLayer n)
          theorem Set.pairwiseDisjoint_minLayer {α : Type u_1} [PartialOrder α] {A : Set α} :
          Set.univ.PairwiseDisjoint A.minLayer
          theorem Set.pairwiseDisjoint_maxLayer {α : Type u_1} [PartialOrder α] {A : Set α} :
          Set.univ.PairwiseDisjoint A.maxLayer
          theorem Set.isAntichain_minLayer {α : Type u_1} [PartialOrder α] {A : Set α} {n : } :
          IsAntichain (fun (x1 x2 : α) => x1 x2) (A.minLayer n)
          theorem Set.isAntichain_maxLayer {α : Type u_1} [PartialOrder α] {A : Set α} {n : } :
          IsAntichain (fun (x1 x2 : α) => x1 x2) (A.maxLayer n)
          theorem Set.exists_le_in_minLayer_of_le {α : Type u_1} [PartialOrder α] {A : Set α} {m n : } {a : α} (ha : a A.minLayer n) (hm : m n) :
          cA.minLayer m, c a
          theorem Set.exists_le_in_maxLayer_of_le {α : Type u_1} [PartialOrder α] {A : Set α} {m n : } {a : α} (ha : a A.maxLayer n) (hm : m n) :
          cA.maxLayer m, a c
          theorem Set.subtype_mk_minimal_iff (α : Type u_2) [Preorder α] (s : Set α) (t : Set s) (x : α) (hx : x s) :
          Minimal (fun (x : s) => x t) x, hx Minimal (fun (y : α) => ∃ (h : y s), y s y, h t) x
          theorem Set.minLayer_eq_setOf_height {α : Type u_1} [PartialOrder α] {A : Set α} {n : } :
          A.minLayer n = {x : α | ∃ (hx : x A), Order.height x, hx = n}

          A.minLayer n comprises exactly A's elements of height n.

          theorem Set.iUnion_minLayer_iff_bounded_series {α : Type u_1} [PartialOrder α] {A : Set α} {n : } :
          ⋃ (k : ), ⋃ (_ : k n), A.minLayer k = A ∀ (p : LTSeries A), p.length n

          A equals the union of its minLayers up to n iff all LTSeries in A have length at most n.

          theorem Set.exists_le_in_layersAbove_of_le {α : Type u_1} [PartialOrder α] {A : Set α} {m n : } {a : α} [Fintype α] (ha : a A.layersAbove n) (hm : m n) :
          cA.minLayer m, c a
          theorem Set.exists_le_in_layersBelow_of_le {α : Type u_1} [PartialOrder α] {A : Set α} {m n : } {a : α} [Fintype α] (ha : a A.layersBelow n) (hm : m n) :
          cA.maxLayer m, a c