Documentation

Carleson.Classical.Approximation

theorem close_smooth_approx_periodic {f : } (unicontf : UniformContinuous f) (periodicf : Function.Periodic f (2 * Real.pi)) {ε : } (εpos : ε > 0) :
∃ (f₀ : ), ContDiff f₀ Function.Periodic f₀ (2 * Real.pi) ∀ (x : ), Complex.abs (f x - f₀ x) ε
theorem summable_of_le_on_nonzero {f g : } (hgpos : 0 g) (hgf : ∀ (i : ), i 0g i f i) (summablef : Summable f) :
theorem continuous_bounded {f : } (hf : ContinuousOn f (Set.Icc 0 (2 * Real.pi))) :
∃ (C : ), xSet.Icc 0 (2 * Real.pi), Complex.abs (f x) C
theorem fourierCoeffOn_bound {f : } (f_continuous : Continuous f) :
∃ (C : ), ∀ (n : ), Complex.abs (fourierCoeffOn Real.two_pi_pos f n) C
theorem periodic_deriv {𝕜 : Type} [NontriviallyNormedField 𝕜] {F : Type} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f : 𝕜F} {T : 𝕜} (diff_f : ContDiff 𝕜 1 f) (periodic_f : Function.Periodic f T) :
theorem fourierCoeffOn_ContDiff_two_bound {f : } (periodicf : Function.Periodic f (2 * Real.pi)) (fdiff : ContDiff 2 f) :
∃ (C : ), ∀ (n : ), n 0Complex.abs (fourierCoeffOn Real.two_pi_pos f n) C / n ^ 2
theorem int_sum_nat {β : Type u_1} [AddCommGroup β] [TopologicalSpace β] [ContinuousAdd β] {f : β} {a : β} (hfa : HasSum f a) :
Filter.Tendsto (fun (N : ) => nFinset.Icc (-Int.ofNat N) N, f n) Filter.atTop (nhds a)
theorem fourierConv_ofTwiceDifferentiable {f : } (periodicf : Function.Periodic f (2 * Real.pi)) (fdiff : ContDiff 2 f) {ε : } (εpos : ε > 0) :
∃ (N₀ : ), N > N₀, xSet.Icc 0 (2 * Real.pi), f x - partialFourierSum N f x ε