theorem
fourierCoeffOn_bound
{f : ℝ → ℂ}
(f_continuous : Continuous f)
:
∃ (C : ℝ), ∀ (n : ℤ), Complex.abs (fourierCoeffOn Real.two_pi_pos f n) ≤ C
theorem
periodic_deriv
{𝕜 : Type}
[NontriviallyNormedField 𝕜]
{F : Type}
[NormedAddCommGroup F]
[NormedSpace 𝕜 F]
{f : 𝕜 → F}
{T : 𝕜}
(diff_f : ContDiff 𝕜 1 f)
(periodic_f : Function.Periodic f T)
:
Function.Periodic (deriv f) T
theorem
fourierCoeffOn_ContDiff_two_bound
{f : ℝ → ℂ}
(periodicf : Function.Periodic f (2 * Real.pi))
(fdiff : ContDiff ℝ 2 f)
:
∃ (C : ℝ), ∀ (n : ℤ), n ≠ 0 → Complex.abs (fourierCoeffOn Real.two_pi_pos f n) ≤ C / ↑n ^ 2
theorem
int_sum_nat
{β : Type u_1}
[AddCommGroup β]
[TopologicalSpace β]
[ContinuousAdd β]
{f : ℤ → β}
{a : β}
(hfa : HasSum f a)
:
Filter.Tendsto (fun (N : ℕ) => ∑ n ∈ Finset.Icc (-Int.ofNat N) ↑N, f n) Filter.atTop (nhds a)