theorem
AddCircle.liftIoc_eq_liftIco_of_ne
{𝕜 : Type u_1}
{B : Type u_2}
[AddCommGroup 𝕜]
[LinearOrder 𝕜]
[IsOrderedAddMonoid 𝕜]
[Archimedean 𝕜]
{p : 𝕜}
[hp : Fact (0 < p)]
{a : 𝕜}
(f : 𝕜 → B)
{x : AddCircle p}
(x_ne_a : x ≠ ↑a)
:
theorem
AddCircle.liftIco_coe_apply_of_periodic
{𝕜 : Type u_1}
{B : Type u_2}
[AddCommGroup 𝕜]
[LinearOrder 𝕜]
[IsOrderedAddMonoid 𝕜]
[Archimedean 𝕜]
{p : 𝕜}
[hp : Fact (0 < p)]
(a : 𝕜)
{f : 𝕜 → B}
(hf : Function.Periodic f p)
(x : 𝕜)
:
theorem
AddCircle.liftIoc_coe_apply_of_periodic
{𝕜 : Type u_1}
{B : Type u_2}
[AddCommGroup 𝕜]
[LinearOrder 𝕜]
[IsOrderedAddMonoid 𝕜]
[Archimedean 𝕜]
{p : 𝕜}
[hp : Fact (0 < p)]
(a : 𝕜)
{f : 𝕜 → B}
(hf : Function.Periodic f p)
(x : 𝕜)
:
theorem
AddCircle.liftIco_comp_mk_eq_of_periodic
{𝕜 : Type u_1}
{B : Type u_2}
[AddCommGroup 𝕜]
[LinearOrder 𝕜]
[IsOrderedAddMonoid 𝕜]
[Archimedean 𝕜]
{p : 𝕜}
[hp : Fact (0 < p)]
(a : 𝕜)
{f : 𝕜 → B}
(hf : Function.Periodic f p)
:
theorem
AddCircle.liftIoc_comp_mk_eq_of_periodic
{𝕜 : Type u_1}
{B : Type u_2}
[AddCommGroup 𝕜]
[LinearOrder 𝕜]
[IsOrderedAddMonoid 𝕜]
[Archimedean 𝕜]
{p : 𝕜}
[hp : Fact (0 < p)]
(a : 𝕜)
{f : 𝕜 → B}
(hf : Function.Periodic f p)
:
theorem
AddCircle.liftIco_eq_liftIco
{𝕜 : Type u_1}
{B : Type u_2}
[AddCommGroup 𝕜]
[LinearOrder 𝕜]
[IsOrderedAddMonoid 𝕜]
[Archimedean 𝕜]
{p : 𝕜}
[hp : Fact (0 < p)]
(a a' : 𝕜)
{f : 𝕜 → B}
(hf : Function.Periodic f p)
:
If f
has period p
, then every lift of f
to AddCircle p
is the same.
theorem
AddCircle.liftIoc_eq_liftIoc
{𝕜 : Type u_1}
{B : Type u_2}
[AddCommGroup 𝕜]
[LinearOrder 𝕜]
[IsOrderedAddMonoid 𝕜]
[Archimedean 𝕜]
{p : 𝕜}
[hp : Fact (0 < p)]
(a a' : 𝕜)
{f : 𝕜 → B}
(hf : Function.Periodic f p)
:
If f
has period p
, then every lift of f
to AddCircle p
is the same.
theorem
AddCircle.liftIco_eq_liftIoc
{𝕜 : Type u_1}
{B : Type u_2}
[AddCommGroup 𝕜]
[LinearOrder 𝕜]
[IsOrderedAddMonoid 𝕜]
[Archimedean 𝕜]
{p : 𝕜}
[hp : Fact (0 < p)]
(a a' : 𝕜)
{f : 𝕜 → B}
(hf : Function.Periodic f p)
:
If f
has period p
, then every lift of f
to AddCircle p
is the same.
theorem
AddCircle.coe_eq_coe_iff_of_mem_Ioc
{𝕜 : Type u_1}
[AddCommGroup 𝕜]
[LinearOrder 𝕜]
[IsOrderedAddMonoid 𝕜]
{p : 𝕜}
[hp : Fact (0 < p)]
{a : 𝕜}
[Archimedean 𝕜]
{x y : 𝕜}
(hx : x ∈ Set.Ioc a (a + p))
(hy : y ∈ Set.Ioc a (a + p))
:
Ioc version of mathlib coe_eq_coe_iff_of_mem_Ico
theorem
AddCircle.eq_coe_Ioc
{𝕜 : Type u_1}
[AddCommGroup 𝕜]
[LinearOrder 𝕜]
[IsOrderedAddMonoid 𝕜]
{p : 𝕜}
[hp : Fact (0 < p)]
[Archimedean 𝕜]
(a : AddCircle p)
:
Ioc version of mathlib eq_coe_Ico