Documentation

Mathlib.Tactic.Positivity.Core

positivity core functionality #

This file sets up the positivity tactic and the @[positivity] attribute, which allow for plugging in new positivity functionality around a positivity-based driver. The actual behavior is in @[positivity]-tagged definitions in Tactic.Positivity.Basic and elsewhere.

Attribute for identifying positivity extensions.

Equations
  • One or more equations did not get rendered due to their size.
theorem ne_of_ne_of_eq' {α : Sort u_1} {a c b : α} (hab : a c) (hbc : a = b) :
b c
inductive Mathlib.Meta.Positivity.Strictness {u : Lean.Level} {α : Q(Type u)} ( : Q(Zero «$α»)) ( : Q(PartialOrder «$α»)) (e : Q(«$α»)) :

The result of positivity running on an expression e of type α.

instance Mathlib.Meta.Positivity.instReprStrictness {u✝ : Lean.Level} {α✝ : Q(Type u✝)} {zα✝ : Q(Zero $α✝)} {pα✝ : Q(PartialOrder $α✝)} {e✝ : Q($α✝)} :
Repr (Strictness zα✝ pα✝ e✝)
Equations
def Mathlib.Meta.Positivity.Strictness.toNonneg {u : Lean.Level} {α : Q(Type u)} ( : Q(Zero «$α»)) ( : Q(PartialOrder «$α»)) {e : Q(«$α»)} :
Strictness eOption Q(0 «$e»)

Extract a proof that e is nonnegative, if possible, from Strictness information about e.

Equations
def Mathlib.Meta.Positivity.Strictness.toNonzero {u : Lean.Level} {α : Q(Type u)} ( : Q(Zero «$α»)) ( : Q(PartialOrder «$α»)) {e : Q(«$α»)} :
Strictness eOption Q(«$e» 0)

Extract a proof that e is nonzero, if possible, from Strictness information about e.

Equations

An extension for positivity.

Read a positivity extension from a declaration of the right type.

Equations
  • One or more equations did not get rendered due to their size.
@[reducible, inline]

Each positivity extension is labelled with a collection of patterns which determine the expressions to which it should be applied.

Equations
theorem Mathlib.Meta.Positivity.lt_of_le_of_ne' {A : Type u_1} {a b : A} [PartialOrder A] :
a bb aa < b
theorem Mathlib.Meta.Positivity.pos_of_isNat {A : Type u_1} {e : A} {n : } [Semiring A] [PartialOrder A] [IsOrderedRing A] [Nontrivial A] (h : NormNum.IsNat e n) (w : Nat.ble 1 n = true) :
0 < e
theorem Mathlib.Meta.Positivity.pos_of_isRat {A : Type u_1} {e : A} {n : } {d : } [Ring A] [LinearOrder A] [IsStrictOrderedRing A] :
NormNum.IsRat e n ddecide (0 < n) = true0 < e
theorem Mathlib.Meta.Positivity.nonneg_of_isRat {A : Type u_1} {e : A} {n : } {d : } [Ring A] [LinearOrder A] :
NormNum.IsRat e n ddecide (n = 0) = true0 e
theorem Mathlib.Meta.Positivity.nz_of_isRat {A : Type u_1} {e : A} {n : } {d : } [Ring A] [LinearOrder A] [IsStrictOrderedRing A] :
NormNum.IsRat e n ddecide (n < 0) = truee 0
def Mathlib.Meta.Positivity.catchNone {u : Lean.Level} {α : Q(Type u)} { : Q(Zero «$α»)} { : Q(PartialOrder «$α»)} {e : Q(«$α»)} (t : Lean.MetaM (Strictness e)) :

Converts a MetaM Strictness which can fail into one that never fails and returns .none instead.

Equations
  • One or more equations did not get rendered due to their size.
def Mathlib.Meta.Positivity.throwNone {u : Lean.Level} {α : Q(Type u)} { : Q(Zero «$α»)} { : Q(PartialOrder «$α»)} {m : TypeType u_2} {e : Q(«$α»)} [Monad m] [Alternative m] (t : m (Strictness e)) :
m (Strictness e)

Converts a MetaM Strictness which can return .none into one which never returns .none but fails instead.

Equations
def Mathlib.Meta.Positivity.normNumPositivity {u : Lean.Level} {α : Q(Type u)} ( : Q(Zero «$α»)) ( : Q(PartialOrder «$α»)) (e : Q(«$α»)) :

Attempts to prove a Strictness result when e evaluates to a literal number.

Equations
  • One or more equations did not get rendered due to their size.
def Mathlib.Meta.Positivity.positivityCanon {u : Lean.Level} {α : Q(Type u)} ( : Q(Zero «$α»)) ( : Q(PartialOrder «$α»)) (e : Q(«$α»)) :

Attempts to prove that e ≥ 0 using zero_le in a CanonicallyOrderedAdd monoid.

Equations
  • One or more equations did not get rendered due to their size.
def Mathlib.Meta.Positivity.compareHypLE {u : Lean.Level} {α : Q(Type u)} ( : Q(Zero «$α»)) ( : Q(PartialOrder «$α»)) (lo e : Q(«$α»)) (p₂ : Q(«$lo» «$e»)) :

A variation on assumption when the hypothesis is lo ≤ e where lo is a numeral.

Equations
  • One or more equations did not get rendered due to their size.
def Mathlib.Meta.Positivity.compareHypLT {u : Lean.Level} {α : Q(Type u)} ( : Q(Zero «$α»)) ( : Q(PartialOrder «$α»)) (lo e : Q(«$α»)) (p₂ : Q(«$lo» < «$e»)) :

A variation on assumption when the hypothesis is lo < e where lo is a numeral.

Equations
  • One or more equations did not get rendered due to their size.
def Mathlib.Meta.Positivity.compareHypEq {u : Lean.Level} {α : Q(Type u)} ( : Q(Zero «$α»)) ( : Q(PartialOrder «$α»)) (e x : Q(«$α»)) (p₂ : Q(«$x» = «$e»)) :

A variation on assumption when the hypothesis is x = e where x is a numeral.

Equations
  • One or more equations did not get rendered due to their size.
def Mathlib.Meta.Positivity.compareHyp {u : Lean.Level} {α : Q(Type u)} ( : Q(Zero «$α»)) ( : Q(PartialOrder «$α»)) (e : Q(«$α»)) (ldecl : Lean.LocalDecl) :

A variation on assumption which checks if the hypothesis ldecl is a [</≤/=] e where a is a numeral.

def Mathlib.Meta.Positivity.orElse {u : Lean.Level} {α : Q(Type u)} { : Q(Zero «$α»)} { : Q(PartialOrder «$α»)} {e : Q(«$α»)} (t₁ : Strictness e) (t₂ : Lean.MetaM (Strictness e)) :

The main combinator which combines multiple positivity results. It assumes t₁ has already been run for a result, and runs t₂ and takes the best result. It will skip t₂ if t₁ is already a proof of .positive, and can also combine .nonnegative and .nonzero to produce a .positive result.

Equations
def Mathlib.Meta.Positivity.core {u : Lean.Level} {α : Q(Type u)} ( : Q(Zero «$α»)) ( : Q(PartialOrder «$α»)) (e : Q(«$α»)) :

Run each registered positivity extension on an expression, returning a NormNum.Result.

Equations
  • One or more equations did not get rendered due to their size.

Given an expression e, use the core method of the positivity tactic to prove it positive, or, failing that, nonnegative; return a boolean (signalling whether the strict or non-strict inequality was established) together with the proof as an expression.

Equations
  • One or more equations did not get rendered due to their size.

Given an expression e, use the core method of the positivity tactic to prove it nonnegative.

Equations
  • One or more equations did not get rendered due to their size.

An auxiliary entry point to the positivity tactic. Given a proposition t of the form 0 [≤/</≠] e, attempts to recurse on the structure of t to prove it. It returns a proof or fails.

The main entry point to the positivity tactic. Given a goal goal of the form 0 [≤/</≠] e, attempts to recurse on the structure of e to prove the goal. It will either close goal or fail.

Equations

Tactic solving goals of the form 0 ≤ x, 0 < x and x ≠ 0. The tactic works recursively according to the syntax of the expression x, if the atoms composing the expression all have numeric lower bounds which can be proved positive/nonnegative/nonzero by norm_num. This tactic either closes the goal or fails.

Examples:

example {a : ℤ} (ha : 3 < a) : 0 ≤ a ^ 3 + a := by positivity

example {a : ℤ} (ha : 1 < a) : 0 < |(3:ℤ) + a| := by positivity

example {b : ℤ} : 0 ≤ max (-3) (b ^ 2) := by positivity
Equations