Lemmas about invOf
in ordered (semi)rings. #
@[simp]
theorem
invOf_pos
{R : Type u_1}
[Semiring R]
[LinearOrder R]
[IsStrictOrderedRing R]
{a : R}
[Invertible a]
:
@[simp]
theorem
invOf_nonpos
{R : Type u_1}
[Semiring R]
[LinearOrder R]
[IsStrictOrderedRing R]
{a : R}
[Invertible a]
:
@[simp]
theorem
invOf_nonneg
{R : Type u_1}
[Semiring R]
[LinearOrder R]
[IsStrictOrderedRing R]
{a : R}
[Invertible a]
:
@[simp]
theorem
invOf_lt_zero
{R : Type u_1}
[Semiring R]
[LinearOrder R]
[IsStrictOrderedRing R]
{a : R}
[Invertible a]
:
@[simp]
theorem
invOf_le_one
{R : Type u_1}
[Semiring R]
[LinearOrder R]
[IsStrictOrderedRing R]
{a : R}
[Invertible a]
(h : 1 ≤ a)
:
theorem
pos_invOf_of_invertible_cast
{R : Type u_1}
[Semiring R]
[LinearOrder R]
[IsStrictOrderedRing R]
[Nontrivial R]
(n : ℕ)
[Invertible ↑n]
: