Documentation

Mathlib.Algebra.Order.Invertible

Lemmas about invOf in ordered (semi)rings. #

@[simp]
theorem invOf_pos {R : Type u_1} [Semiring R] [LinearOrder R] [IsStrictOrderedRing R] {a : R} [Invertible a] :
0 < a 0 < a
@[simp]
theorem invOf_nonpos {R : Type u_1} [Semiring R] [LinearOrder R] [IsStrictOrderedRing R] {a : R} [Invertible a] :
a 0 a 0
@[simp]
theorem invOf_nonneg {R : Type u_1} [Semiring R] [LinearOrder R] [IsStrictOrderedRing R] {a : R} [Invertible a] :
0 a 0 a
@[simp]
theorem invOf_lt_zero {R : Type u_1} [Semiring R] [LinearOrder R] [IsStrictOrderedRing R] {a : R} [Invertible a] :
a < 0 a < 0
@[simp]
theorem invOf_le_one {R : Type u_1} [Semiring R] [LinearOrder R] [IsStrictOrderedRing R] {a : R} [Invertible a] (h : 1 a) :
a 1