Documentation

Mathlib.Order.Hom.Lattice

Unbounded lattice homomorphisms #

This file defines unbounded lattice homomorphisms. Bounded lattice homomorphisms are defined in Mathlib.Order.Hom.BoundedLattice.

We use the DFunLike design, so each type of morphisms has a companion typeclass which is meant to be satisfied by itself and all stricter types.

Types of morphisms #

Typeclasses #

structure SupHom (α : Type u_6) (β : Type u_7) [Max α] [Max β] :
Type (max u_6 u_7)

The type of -preserving functions from α to β.

  • toFun : αβ

    The underlying function of a SupHom.

    Do not use this function directly. Instead use the coercion coming from the FunLike instance.

  • map_sup' (a b : α) : self.toFun (a b) = self.toFun a self.toFun b

    A SupHom preserves suprema.

    Do not use this directly. Use map_sup instead.

structure InfHom (α : Type u_6) (β : Type u_7) [Min α] [Min β] :
Type (max u_6 u_7)

The type of -preserving functions from α to β.

  • toFun : αβ

    The underlying function of an InfHom.

    Do not use this function directly. Instead use the coercion coming from the FunLike instance.

  • map_inf' (a b : α) : self.toFun (a b) = self.toFun a self.toFun b

    An InfHom preserves infima.

    Do not use this directly. Use map_inf instead.

structure LatticeHom (α : Type u_6) (β : Type u_7) [Lattice α] [Lattice β] extends SupHom α β :
Type (max u_6 u_7)

The type of lattice homomorphisms from α to β.

class SupHomClass (F : Type u_6) (α : Type u_7) (β : Type u_8) [Max α] [Max β] [FunLike F α β] :

SupHomClass F α β states that F is a type of -preserving morphisms.

You should extend this class when you extend SupHom.

  • map_sup (f : F) (a b : α) : f (a b) = f a f b

    A SupHomClass morphism preserves suprema.

Instances
    class InfHomClass (F : Type u_6) (α : Type u_7) (β : Type u_8) [Min α] [Min β] [FunLike F α β] :

    InfHomClass F α β states that F is a type of -preserving morphisms.

    You should extend this class when you extend InfHom.

    • map_inf (f : F) (a b : α) : f (a b) = f a f b

      An InfHomClass morphism preserves infima.

    Instances
      class LatticeHomClass (F : Type u_6) (α : Type u_7) (β : Type u_8) [Lattice α] [Lattice β] [FunLike F α β] extends SupHomClass F α β :

      LatticeHomClass F α β states that F is a type of lattice morphisms.

      You should extend this class when you extend LatticeHom.

      Instances
        @[instance 100]
        instance SupHomClass.toOrderHomClass {F : Type u_1} {α : Type u_2} {β : Type u_3} [FunLike F α β] [SemilatticeSup α] [SemilatticeSup β] [SupHomClass F α β] :
        @[instance 100]
        instance InfHomClass.toOrderHomClass {F : Type u_1} {α : Type u_2} {β : Type u_3} [FunLike F α β] [SemilatticeInf α] [SemilatticeInf β] [InfHomClass F α β] :
        @[instance 100]
        instance LatticeHomClass.toInfHomClass {F : Type u_1} {α : Type u_2} {β : Type u_3} [FunLike F α β] [Lattice α] [Lattice β] [LatticeHomClass F α β] :
        InfHomClass F α β
        @[instance 100]
        instance OrderIsoClass.toSupHomClass {F : Type u_1} {α : Type u_2} {β : Type u_3} [EquivLike F α β] [SemilatticeSup α] [SemilatticeSup β] [OrderIsoClass F α β] :
        SupHomClass F α β
        @[instance 100]
        instance OrderIsoClass.toInfHomClass {F : Type u_1} {α : Type u_2} {β : Type u_3} [EquivLike F α β] [SemilatticeInf α] [SemilatticeInf β] [OrderIsoClass F α β] :
        InfHomClass F α β
        @[instance 100]
        instance OrderIsoClass.toLatticeHomClass {F : Type u_1} {α : Type u_2} {β : Type u_3} [EquivLike F α β] [Lattice α] [Lattice β] [OrderIsoClass F α β] :
        def orderEmbeddingOfInjective {F : Type u_1} {α : Type u_2} {β : Type u_3} [FunLike F α β] [SemilatticeInf α] [SemilatticeInf β] (f : F) [InfHomClass F α β] (hf : Function.Injective f) :
        α ↪o β

        We can regard an injective map preserving binary infima as an order embedding.

        Equations
        @[simp]
        theorem orderEmbeddingOfInjective_apply {F : Type u_1} {α : Type u_2} {β : Type u_3} [FunLike F α β] [SemilatticeInf α] [SemilatticeInf β] (f : F) [InfHomClass F α β] (hf : Function.Injective f) (a : α) :
        instance instCoeTCSupHomOfSupHomClass {F : Type u_1} {α : Type u_2} {β : Type u_3} [FunLike F α β] [Max α] [Max β] [SupHomClass F α β] :
        CoeTC F (SupHom α β)
        Equations
        instance instCoeTCInfHomOfInfHomClass {F : Type u_1} {α : Type u_2} {β : Type u_3} [FunLike F α β] [Min α] [Min β] [InfHomClass F α β] :
        CoeTC F (InfHom α β)
        Equations
        instance instCoeTCLatticeHomOfLatticeHomClass {F : Type u_1} {α : Type u_2} {β : Type u_3} [FunLike F α β] [Lattice α] [Lattice β] [LatticeHomClass F α β] :
        CoeTC F (LatticeHom α β)
        Equations

        Supremum homomorphisms #

        instance SupHom.instFunLike {α : Type u_2} {β : Type u_3} [Max α] [Max β] :
        FunLike (SupHom α β) α β
        Equations
        instance SupHom.instSupHomClass {α : Type u_2} {β : Type u_3} [Max α] [Max β] :
        SupHomClass (SupHom α β) α β
        @[simp]
        theorem SupHom.toFun_eq_coe {α : Type u_2} {β : Type u_3} [Max α] [Max β] (f : SupHom α β) :
        f.toFun = f
        @[simp]
        theorem SupHom.coe_mk {α : Type u_2} {β : Type u_3} [Max α] [Max β] (f : αβ) (hf : ∀ (a b : α), f (a b) = f a f b) :
        { toFun := f, map_sup' := hf } = f
        theorem SupHom.ext {α : Type u_2} {β : Type u_3} [Max α] [Max β] {f g : SupHom α β} (h : ∀ (a : α), f a = g a) :
        f = g
        theorem SupHom.ext_iff {α : Type u_2} {β : Type u_3} [Max α] [Max β] {f g : SupHom α β} :
        f = g ∀ (a : α), f a = g a
        def SupHom.copy {α : Type u_2} {β : Type u_3} [Max α] [Max β] (f : SupHom α β) (f' : αβ) (h : f' = f) :
        SupHom α β

        Copy of a SupHom with a new toFun equal to the old one. Useful to fix definitional equalities.

        Equations
        • f.copy f' h = { toFun := f', map_sup' := }
        @[simp]
        theorem SupHom.coe_copy {α : Type u_2} {β : Type u_3} [Max α] [Max β] (f : SupHom α β) (f' : αβ) (h : f' = f) :
        (f.copy f' h) = f'
        theorem SupHom.copy_eq {α : Type u_2} {β : Type u_3} [Max α] [Max β] (f : SupHom α β) (f' : αβ) (h : f' = f) :
        f.copy f' h = f
        def SupHom.id (α : Type u_2) [Max α] :
        SupHom α α

        id as a SupHom.

        Equations
        instance SupHom.instInhabited (α : Type u_2) [Max α] :
        Equations
        @[simp]
        theorem SupHom.coe_id (α : Type u_2) [Max α] :
        (SupHom.id α) = id
        @[simp]
        theorem SupHom.id_apply {α : Type u_2} [Max α] (a : α) :
        (SupHom.id α) a = a
        def SupHom.comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Max α] [Max β] [Max γ] (f : SupHom β γ) (g : SupHom α β) :
        SupHom α γ

        Composition of SupHoms as a SupHom.

        Equations
        • f.comp g = { toFun := f g, map_sup' := }
        @[simp]
        theorem SupHom.coe_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Max α] [Max β] [Max γ] (f : SupHom β γ) (g : SupHom α β) :
        (f.comp g) = f g
        @[simp]
        theorem SupHom.comp_apply {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Max α] [Max β] [Max γ] (f : SupHom β γ) (g : SupHom α β) (a : α) :
        (f.comp g) a = f (g a)
        @[simp]
        theorem SupHom.comp_assoc {α : Type u_2} {β : Type u_3} {γ : Type u_4} {δ : Type u_5} [Max α] [Max β] [Max γ] [Max δ] (f : SupHom γ δ) (g : SupHom β γ) (h : SupHom α β) :
        (f.comp g).comp h = f.comp (g.comp h)
        @[simp]
        theorem SupHom.comp_id {α : Type u_2} {β : Type u_3} [Max α] [Max β] (f : SupHom α β) :
        f.comp (SupHom.id α) = f
        @[simp]
        theorem SupHom.id_comp {α : Type u_2} {β : Type u_3} [Max α] [Max β] (f : SupHom α β) :
        (SupHom.id β).comp f = f
        @[simp]
        theorem SupHom.cancel_right {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Max α] [Max β] [Max γ] {g₁ g₂ : SupHom β γ} {f : SupHom α β} (hf : Function.Surjective f) :
        g₁.comp f = g₂.comp f g₁ = g₂
        @[simp]
        theorem SupHom.cancel_left {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Max α] [Max β] [Max γ] {g : SupHom β γ} {f₁ f₂ : SupHom α β} (hg : Function.Injective g) :
        g.comp f₁ = g.comp f₂ f₁ = f₂
        def SupHom.const (α : Type u_2) {β : Type u_3} [Max α] [SemilatticeSup β] (b : β) :
        SupHom α β

        The constant function as a SupHom.

        Equations
        • SupHom.const α b = { toFun := fun (x : α) => b, map_sup' := }
        @[simp]
        theorem SupHom.coe_const (α : Type u_2) {β : Type u_3} [Max α] [SemilatticeSup β] (b : β) :
        (const α b) = Function.const α b
        @[simp]
        theorem SupHom.const_apply (α : Type u_2) {β : Type u_3} [Max α] [SemilatticeSup β] (b : β) (a : α) :
        (const α b) a = b
        instance SupHom.instMax {α : Type u_2} {β : Type u_3} [Max α] [SemilatticeSup β] :
        Max (SupHom α β)
        Equations
        instance SupHom.instSemilatticeSup {α : Type u_2} {β : Type u_3} [Max α] [SemilatticeSup β] :
        Equations
        instance SupHom.instBot {α : Type u_2} {β : Type u_3} [Max α] [SemilatticeSup β] [Bot β] :
        Bot (SupHom α β)
        Equations
        instance SupHom.instTop {α : Type u_2} {β : Type u_3} [Max α] [SemilatticeSup β] [Top β] :
        Top (SupHom α β)
        Equations
        instance SupHom.instOrderBot {α : Type u_2} {β : Type u_3} [Max α] [SemilatticeSup β] [OrderBot β] :
        Equations
        instance SupHom.instOrderTop {α : Type u_2} {β : Type u_3} [Max α] [SemilatticeSup β] [OrderTop β] :
        Equations
        @[simp]
        theorem SupHom.coe_sup {α : Type u_2} {β : Type u_3} [Max α] [SemilatticeSup β] (f g : SupHom α β) :
        ⇑(f g) = ⇑(f g)
        @[simp]
        theorem SupHom.coe_bot {α : Type u_2} {β : Type u_3} [Max α] [SemilatticeSup β] [Bot β] :
        =
        @[simp]
        theorem SupHom.coe_top {α : Type u_2} {β : Type u_3} [Max α] [SemilatticeSup β] [Top β] :
        =
        @[simp]
        theorem SupHom.sup_apply {α : Type u_2} {β : Type u_3} [Max α] [SemilatticeSup β] (f g : SupHom α β) (a : α) :
        (f g) a = f a g a
        @[simp]
        theorem SupHom.bot_apply {α : Type u_2} {β : Type u_3} [Max α] [SemilatticeSup β] [Bot β] (a : α) :
        @[simp]
        theorem SupHom.top_apply {α : Type u_2} {β : Type u_3} [Max α] [SemilatticeSup β] [Top β] (a : α) :
        def SupHom.subtypeVal {β : Type u_3} [SemilatticeSup β] {P : βProp} (Psup : ∀ ⦃x y : β⦄, P xP yP (x y)) :
        SupHom { x : β // P x } β

        Subtype.val as a SupHom.

        Equations
        @[simp]
        theorem SupHom.subtypeVal_apply {β : Type u_3} [SemilatticeSup β] {P : βProp} (Psup : ∀ ⦃x y : β⦄, P xP yP (x y)) (x : { x : β // P x }) :
        (subtypeVal Psup) x = x
        @[simp]
        theorem SupHom.subtypeVal_coe {β : Type u_3} [SemilatticeSup β] {P : βProp} (Psup : ∀ ⦃x y : β⦄, P xP yP (x y)) :

        Infimum homomorphisms #

        instance InfHom.instFunLike {α : Type u_2} {β : Type u_3} [Min α] [Min β] :
        FunLike (InfHom α β) α β
        Equations
        instance InfHom.instInfHomClass {α : Type u_2} {β : Type u_3} [Min α] [Min β] :
        InfHomClass (InfHom α β) α β
        @[simp]
        theorem InfHom.toFun_eq_coe {α : Type u_2} {β : Type u_3} [Min α] [Min β] (f : InfHom α β) :
        f.toFun = f
        @[simp]
        theorem InfHom.coe_mk {α : Type u_2} {β : Type u_3} [Min α] [Min β] (f : αβ) (hf : ∀ (a b : α), f (a b) = f a f b) :
        { toFun := f, map_inf' := hf } = f
        theorem InfHom.ext {α : Type u_2} {β : Type u_3} [Min α] [Min β] {f g : InfHom α β} (h : ∀ (a : α), f a = g a) :
        f = g
        theorem InfHom.ext_iff {α : Type u_2} {β : Type u_3} [Min α] [Min β] {f g : InfHom α β} :
        f = g ∀ (a : α), f a = g a
        def InfHom.copy {α : Type u_2} {β : Type u_3} [Min α] [Min β] (f : InfHom α β) (f' : αβ) (h : f' = f) :
        InfHom α β

        Copy of an InfHom with a new toFun equal to the old one. Useful to fix definitional equalities.

        Equations
        • f.copy f' h = { toFun := f', map_inf' := }
        @[simp]
        theorem InfHom.coe_copy {α : Type u_2} {β : Type u_3} [Min α] [Min β] (f : InfHom α β) (f' : αβ) (h : f' = f) :
        (f.copy f' h) = f'
        theorem InfHom.copy_eq {α : Type u_2} {β : Type u_3} [Min α] [Min β] (f : InfHom α β) (f' : αβ) (h : f' = f) :
        f.copy f' h = f
        def InfHom.id (α : Type u_2) [Min α] :
        InfHom α α

        id as an InfHom.

        Equations
        instance InfHom.instInhabited (α : Type u_2) [Min α] :
        Equations
        @[simp]
        theorem InfHom.coe_id (α : Type u_2) [Min α] :
        (InfHom.id α) = id
        @[simp]
        theorem InfHom.id_apply {α : Type u_2} [Min α] (a : α) :
        (InfHom.id α) a = a
        def InfHom.comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Min α] [Min β] [Min γ] (f : InfHom β γ) (g : InfHom α β) :
        InfHom α γ

        Composition of InfHoms as an InfHom.

        Equations
        • f.comp g = { toFun := f g, map_inf' := }
        @[simp]
        theorem InfHom.coe_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Min α] [Min β] [Min γ] (f : InfHom β γ) (g : InfHom α β) :
        (f.comp g) = f g
        @[simp]
        theorem InfHom.comp_apply {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Min α] [Min β] [Min γ] (f : InfHom β γ) (g : InfHom α β) (a : α) :
        (f.comp g) a = f (g a)
        @[simp]
        theorem InfHom.comp_assoc {α : Type u_2} {β : Type u_3} {γ : Type u_4} {δ : Type u_5} [Min α] [Min β] [Min γ] [Min δ] (f : InfHom γ δ) (g : InfHom β γ) (h : InfHom α β) :
        (f.comp g).comp h = f.comp (g.comp h)
        @[simp]
        theorem InfHom.comp_id {α : Type u_2} {β : Type u_3} [Min α] [Min β] (f : InfHom α β) :
        f.comp (InfHom.id α) = f
        @[simp]
        theorem InfHom.id_comp {α : Type u_2} {β : Type u_3} [Min α] [Min β] (f : InfHom α β) :
        (InfHom.id β).comp f = f
        @[simp]
        theorem InfHom.cancel_right {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Min α] [Min β] [Min γ] {g₁ g₂ : InfHom β γ} {f : InfHom α β} (hf : Function.Surjective f) :
        g₁.comp f = g₂.comp f g₁ = g₂
        @[simp]
        theorem InfHom.cancel_left {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Min α] [Min β] [Min γ] {g : InfHom β γ} {f₁ f₂ : InfHom α β} (hg : Function.Injective g) :
        g.comp f₁ = g.comp f₂ f₁ = f₂
        def InfHom.const (α : Type u_2) {β : Type u_3} [Min α] [SemilatticeInf β] (b : β) :
        InfHom α β

        The constant function as an InfHom.

        Equations
        • InfHom.const α b = { toFun := fun (x : α) => b, map_inf' := }
        @[simp]
        theorem InfHom.coe_const (α : Type u_2) {β : Type u_3} [Min α] [SemilatticeInf β] (b : β) :
        (const α b) = Function.const α b
        @[simp]
        theorem InfHom.const_apply (α : Type u_2) {β : Type u_3} [Min α] [SemilatticeInf β] (b : β) (a : α) :
        (const α b) a = b
        instance InfHom.instMin {α : Type u_2} {β : Type u_3} [Min α] [SemilatticeInf β] :
        Min (InfHom α β)
        Equations
        instance InfHom.instSemilatticeInf {α : Type u_2} {β : Type u_3} [Min α] [SemilatticeInf β] :
        Equations
        instance InfHom.instBot {α : Type u_2} {β : Type u_3} [Min α] [SemilatticeInf β] [Bot β] :
        Bot (InfHom α β)
        Equations
        instance InfHom.instTop {α : Type u_2} {β : Type u_3} [Min α] [SemilatticeInf β] [Top β] :
        Top (InfHom α β)
        Equations
        instance InfHom.instOrderBot {α : Type u_2} {β : Type u_3} [Min α] [SemilatticeInf β] [OrderBot β] :
        Equations
        instance InfHom.instOrderTop {α : Type u_2} {β : Type u_3} [Min α] [SemilatticeInf β] [OrderTop β] :
        Equations
        @[simp]
        theorem InfHom.coe_inf {α : Type u_2} {β : Type u_3} [Min α] [SemilatticeInf β] (f g : InfHom α β) :
        ⇑(f g) = ⇑(f g)
        @[simp]
        theorem InfHom.coe_bot {α : Type u_2} {β : Type u_3} [Min α] [SemilatticeInf β] [Bot β] :
        =
        @[simp]
        theorem InfHom.coe_top {α : Type u_2} {β : Type u_3} [Min α] [SemilatticeInf β] [Top β] :
        =
        @[simp]
        theorem InfHom.inf_apply {α : Type u_2} {β : Type u_3} [Min α] [SemilatticeInf β] (f g : InfHom α β) (a : α) :
        (f g) a = f a g a
        @[simp]
        theorem InfHom.bot_apply {α : Type u_2} {β : Type u_3} [Min α] [SemilatticeInf β] [Bot β] (a : α) :
        @[simp]
        theorem InfHom.top_apply {α : Type u_2} {β : Type u_3} [Min α] [SemilatticeInf β] [Top β] (a : α) :
        def InfHom.subtypeVal {β : Type u_3} [SemilatticeInf β] {P : βProp} (Pinf : ∀ ⦃x y : β⦄, P xP yP (x y)) :
        InfHom { x : β // P x } β

        Subtype.val as an InfHom.

        Equations
        @[simp]
        theorem InfHom.subtypeVal_apply {β : Type u_3} [SemilatticeInf β] {P : βProp} (Pinf : ∀ ⦃x y : β⦄, P xP yP (x y)) (x : { x : β // P x }) :
        (subtypeVal Pinf) x = x
        @[simp]
        theorem InfHom.subtypeVal_coe {β : Type u_3} [SemilatticeInf β] {P : βProp} (Pinf : ∀ ⦃x y : β⦄, P xP yP (x y)) :

        Lattice homomorphisms #

        def LatticeHom.toInfHom {α : Type u_2} {β : Type u_3} [Lattice α] [Lattice β] (f : LatticeHom α β) :
        InfHom α β

        Reinterpret a LatticeHom as an InfHom.

        Equations
        instance LatticeHom.instFunLike {α : Type u_2} {β : Type u_3} [Lattice α] [Lattice β] :
        FunLike (LatticeHom α β) α β
        Equations
        instance LatticeHom.instLatticeHomClass {α : Type u_2} {β : Type u_3} [Lattice α] [Lattice β] :
        theorem LatticeHom.toFun_eq_coe {α : Type u_2} {β : Type u_3} [Lattice α] [Lattice β] (f : LatticeHom α β) :
        f.toFun = f
        @[simp]
        theorem LatticeHom.coe_toSupHom {α : Type u_2} {β : Type u_3} [Lattice α] [Lattice β] (f : LatticeHom α β) :
        f.toSupHom = f
        @[simp]
        theorem LatticeHom.coe_toInfHom {α : Type u_2} {β : Type u_3} [Lattice α] [Lattice β] (f : LatticeHom α β) :
        f.toInfHom = f
        @[simp]
        theorem LatticeHom.coe_mk {α : Type u_2} {β : Type u_3} [Lattice α] [Lattice β] (f : SupHom α β) (hf : ∀ (a b : α), f.toFun (a b) = f.toFun a f.toFun b) :
        { toSupHom := f, map_inf' := hf } = f
        theorem LatticeHom.ext {α : Type u_2} {β : Type u_3} [Lattice α] [Lattice β] {f g : LatticeHom α β} (h : ∀ (a : α), f a = g a) :
        f = g
        theorem LatticeHom.ext_iff {α : Type u_2} {β : Type u_3} [Lattice α] [Lattice β] {f g : LatticeHom α β} :
        f = g ∀ (a : α), f a = g a
        def LatticeHom.copy {α : Type u_2} {β : Type u_3} [Lattice α] [Lattice β] (f : LatticeHom α β) (f' : αβ) (h : f' = f) :

        Copy of a LatticeHom with a new toFun equal to the old one. Useful to fix definitional equalities.

        Equations
        • f.copy f' h = { toSupHom := f.copy f' h, map_inf' := }
        @[simp]
        theorem LatticeHom.coe_copy {α : Type u_2} {β : Type u_3} [Lattice α] [Lattice β] (f : LatticeHom α β) (f' : αβ) (h : f' = f) :
        (f.copy f' h) = f'
        theorem LatticeHom.copy_eq {α : Type u_2} {β : Type u_3} [Lattice α] [Lattice β] (f : LatticeHom α β) (f' : αβ) (h : f' = f) :
        f.copy f' h = f
        def LatticeHom.id (α : Type u_2) [Lattice α] :

        id as a LatticeHom.

        Equations
        instance LatticeHom.instInhabited (α : Type u_2) [Lattice α] :
        Equations
        @[simp]
        theorem LatticeHom.coe_id (α : Type u_2) [Lattice α] :
        @[simp]
        theorem LatticeHom.id_apply {α : Type u_2} [Lattice α] (a : α) :
        (LatticeHom.id α) a = a
        def LatticeHom.comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Lattice α] [Lattice β] [Lattice γ] (f : LatticeHom β γ) (g : LatticeHom α β) :

        Composition of LatticeHoms as a LatticeHom.

        Equations
        @[simp]
        theorem LatticeHom.coe_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Lattice α] [Lattice β] [Lattice γ] (f : LatticeHom β γ) (g : LatticeHom α β) :
        (f.comp g) = f g
        @[simp]
        theorem LatticeHom.comp_apply {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Lattice α] [Lattice β] [Lattice γ] (f : LatticeHom β γ) (g : LatticeHom α β) (a : α) :
        (f.comp g) a = f (g a)
        @[simp]
        theorem LatticeHom.coe_comp_sup_hom' {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Lattice α] [Lattice β] [Lattice γ] (f : LatticeHom β γ) (g : LatticeHom α β) :
        { toFun := f g, map_sup' := } = { toFun := f, map_sup' := }.comp { toFun := g, map_sup' := }
        theorem LatticeHom.coe_comp_sup_hom {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Lattice α] [Lattice β] [Lattice γ] (f : LatticeHom β γ) (g : LatticeHom α β) :
        { toFun := (f.comp g), map_sup' := } = { toFun := f, map_sup' := }.comp { toFun := g, map_sup' := }
        @[simp]
        theorem LatticeHom.coe_comp_inf_hom' {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Lattice α] [Lattice β] [Lattice γ] (f : LatticeHom β γ) (g : LatticeHom α β) :
        { toFun := f g, map_inf' := } = { toFun := f, map_inf' := }.comp { toFun := g, map_inf' := }
        theorem LatticeHom.coe_comp_inf_hom {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Lattice α] [Lattice β] [Lattice γ] (f : LatticeHom β γ) (g : LatticeHom α β) :
        { toFun := (f.comp g), map_inf' := } = { toFun := f, map_inf' := }.comp { toFun := g, map_inf' := }
        @[simp]
        theorem LatticeHom.comp_assoc {α : Type u_2} {β : Type u_3} {γ : Type u_4} {δ : Type u_5} [Lattice α] [Lattice β] [Lattice γ] [Lattice δ] (f : LatticeHom γ δ) (g : LatticeHom β γ) (h : LatticeHom α β) :
        (f.comp g).comp h = f.comp (g.comp h)
        @[simp]
        theorem LatticeHom.comp_id {α : Type u_2} {β : Type u_3} [Lattice α] [Lattice β] (f : LatticeHom α β) :
        @[simp]
        theorem LatticeHom.id_comp {α : Type u_2} {β : Type u_3} [Lattice α] [Lattice β] (f : LatticeHom α β) :
        @[simp]
        theorem LatticeHom.cancel_right {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Lattice α] [Lattice β] [Lattice γ] {g₁ g₂ : LatticeHom β γ} {f : LatticeHom α β} (hf : Function.Surjective f) :
        g₁.comp f = g₂.comp f g₁ = g₂
        @[simp]
        theorem LatticeHom.cancel_left {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Lattice α] [Lattice β] [Lattice γ] {g : LatticeHom β γ} {f₁ f₂ : LatticeHom α β} (hg : Function.Injective g) :
        g.comp f₁ = g.comp f₂ f₁ = f₂
        def LatticeHom.subtypeVal {β : Type u_3} [Lattice β] {P : βProp} (Psup : ∀ ⦃x y : β⦄, P xP yP (x y)) (Pinf : ∀ ⦃x y : β⦄, P xP yP (x y)) :
        LatticeHom { x : β // P x } β

        Subtype.val as a LatticeHom.

        Equations
        @[simp]
        theorem LatticeHom.subtypeVal_apply {β : Type u_3} [Lattice β] {P : βProp} (Psup : ∀ ⦃x y : β⦄, P xP yP (x y)) (Pinf : ∀ ⦃x y : β⦄, P xP yP (x y)) (x : { x : β // P x }) :
        (subtypeVal Psup Pinf) x = x
        @[simp]
        theorem LatticeHom.subtypeVal_coe {β : Type u_3} [Lattice β] {P : βProp} (Psup : ∀ ⦃x y : β⦄, P xP yP (x y)) (Pinf : ∀ ⦃x y : β⦄, P xP yP (x y)) :
        (subtypeVal Psup Pinf) = Subtype.val
        @[instance 100]
        instance OrderHomClass.toLatticeHomClass {F : Type u_1} (α : Type u_2) (β : Type u_3) [FunLike F α β] [LinearOrder α] [Lattice β] [OrderHomClass F α β] :

        An order homomorphism from a linear order is a lattice homomorphism.

        def OrderHomClass.toLatticeHom {F : Type u_1} (α : Type u_2) (β : Type u_3) [FunLike F α β] [LinearOrder α] [Lattice β] [OrderHomClass F α β] (f : F) :

        Reinterpret an order homomorphism to a linear order as a LatticeHom.

        Equations
        @[simp]
        theorem OrderHomClass.coe_to_lattice_hom {F : Type u_1} (α : Type u_2) (β : Type u_3) [FunLike F α β] [LinearOrder α] [Lattice β] [OrderHomClass F α β] (f : F) :
        (toLatticeHom α β f) = f
        @[simp]
        theorem OrderHomClass.to_lattice_hom_apply {F : Type u_1} (α : Type u_2) (β : Type u_3) [FunLike F α β] [LinearOrder α] [Lattice β] [OrderHomClass F α β] (f : F) (a : α) :
        (toLatticeHom α β f) a = f a

        Dual homs #

        def SupHom.dual {α : Type u_2} {β : Type u_3} [Max α] [Max β] :

        Reinterpret a supremum homomorphism as an infimum homomorphism between the dual lattices.

        Equations
        • SupHom.dual = { toFun := fun (f : SupHom α β) => { toFun := f, map_inf' := }, invFun := fun (f : InfHom αᵒᵈ βᵒᵈ) => { toFun := f, map_sup' := }, left_inv := , right_inv := }
        @[simp]
        theorem SupHom.dual_apply_toFun {α : Type u_2} {β : Type u_3} [Max α] [Max β] (f : SupHom α β) (a : α) :
        (SupHom.dual f) a = f a
        @[simp]
        theorem SupHom.dual_symm_apply_toFun {α : Type u_2} {β : Type u_3} [Max α] [Max β] (f : InfHom αᵒᵈ βᵒᵈ) (a : αᵒᵈ) :
        (SupHom.dual.symm f) a = f a
        @[simp]
        theorem SupHom.dual_id {α : Type u_2} [Max α] :
        @[simp]
        theorem SupHom.dual_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Max α] [Max β] [Max γ] (g : SupHom β γ) (f : SupHom α β) :
        @[simp]
        @[simp]
        theorem SupHom.symm_dual_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Max α] [Max β] [Max γ] (g : InfHom βᵒᵈ γᵒᵈ) (f : InfHom αᵒᵈ βᵒᵈ) :
        def InfHom.dual {α : Type u_2} {β : Type u_3} [Min α] [Min β] :

        Reinterpret an infimum homomorphism as a supremum homomorphism between the dual lattices.

        Equations
        • InfHom.dual = { toFun := fun (f : InfHom α β) => { toFun := f, map_sup' := }, invFun := fun (f : SupHom αᵒᵈ βᵒᵈ) => { toFun := f, map_inf' := }, left_inv := , right_inv := }
        @[simp]
        theorem InfHom.dual_symm_apply_toFun {α : Type u_2} {β : Type u_3} [Min α] [Min β] (f : SupHom αᵒᵈ βᵒᵈ) (a : αᵒᵈ) :
        (InfHom.dual.symm f) a = f a
        @[simp]
        theorem InfHom.dual_apply_toFun {α : Type u_2} {β : Type u_3} [Min α] [Min β] (f : InfHom α β) (a : α) :
        (InfHom.dual f) a = f a
        @[simp]
        theorem InfHom.dual_id {α : Type u_2} [Min α] :
        @[simp]
        theorem InfHom.dual_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Min α] [Min β] [Min γ] (g : InfHom β γ) (f : InfHom α β) :
        @[simp]
        @[simp]
        theorem InfHom.symm_dual_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Min α] [Min β] [Min γ] (g : SupHom βᵒᵈ γᵒᵈ) (f : SupHom αᵒᵈ βᵒᵈ) :
        def LatticeHom.dual {α : Type u_2} {β : Type u_3} [Lattice α] [Lattice β] :

        Reinterpret a lattice homomorphism as a lattice homomorphism between the dual lattices.

        Equations
        • One or more equations did not get rendered due to their size.
        @[simp]
        @[simp]
        theorem LatticeHom.dual_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Lattice α] [Lattice β] [Lattice γ] (g : LatticeHom β γ) (f : LatticeHom α β) :
        @[simp]
        theorem LatticeHom.symm_dual_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Lattice α] [Lattice β] [Lattice γ] (g : LatticeHom βᵒᵈ γᵒᵈ) (f : LatticeHom αᵒᵈ βᵒᵈ) :

        Prod #

        def LatticeHom.fst {α : Type u_2} {β : Type u_3} [Lattice α] [Lattice β] :
        LatticeHom (α × β) α

        Natural projection homomorphism from α × β to α.

        Equations
        def LatticeHom.snd {α : Type u_2} {β : Type u_3} [Lattice α] [Lattice β] :
        LatticeHom (α × β) β

        Natural projection homomorphism from α × β to β.

        Equations
        @[simp]
        theorem LatticeHom.coe_fst {α : Type u_2} {β : Type u_3} [Lattice α] [Lattice β] :
        @[simp]
        theorem LatticeHom.coe_snd {α : Type u_2} {β : Type u_3} [Lattice α] [Lattice β] :
        theorem LatticeHom.fst_apply {α : Type u_2} {β : Type u_3} [Lattice α] [Lattice β] (x : α × β) :
        fst x = x.1
        theorem LatticeHom.snd_apply {α : Type u_2} {β : Type u_3} [Lattice α] [Lattice β] (x : α × β) :
        snd x = x.2

        Pi #

        def Pi.evalLatticeHom {ι : Type u_6} {α : ιType u_7} [(i : ι) → Lattice (α i)] (i : ι) :
        LatticeHom ((i : ι) → α i) (α i)

        Evaluation as a lattice homomorphism.

        Equations
        @[simp]
        theorem Pi.coe_evalLatticeHom {ι : Type u_6} {α : ιType u_7} [(i : ι) → Lattice (α i)] (i : ι) :
        theorem Pi.evalLatticeHom_apply {ι : Type u_6} {α : ιType u_7} [(i : ι) → Lattice (α i)] (i : ι) (f : (i : ι) → α i) :
        (evalLatticeHom i) f = f i