Documentation

Mathlib.Order.Filter.Germ.Basic

Germ of a function at a filter #

The germ of a function f : α → β at a filter l : Filter α is the equivalence class of f with respect to the equivalence relation EventuallyEq l: f ≈ g means ∀ᶠ x in l, f x = g x.

Main definitions #

We define

We also define map (F : β → γ) : Germ l β → Germ l γ sending each germ f to F ∘ f.

For each of the following structures we prove that if β has this structure, then so does Germ l β:

Tags #

filter, germ

theorem Filter.const_eventuallyEq' {α : Type u_1} {β : Type u_2} {l : Filter α} [l.NeBot] {a b : β} :
(∀ᶠ (x : α) in l, a = b) a = b
theorem Filter.const_eventuallyEq {α : Type u_1} {β : Type u_2} {l : Filter α} [l.NeBot] {a b : β} :
((fun (x : α) => a) =ᶠ[l] fun (x : α) => b) a = b
def Filter.germSetoid {α : Type u_1} (l : Filter α) (β : Type u_5) :
Setoid (αβ)

Setoid used to define the space of germs.

Equations
def Filter.Germ {α : Type u_1} (l : Filter α) (β : Type u_5) :
Type (max u_1 u_5)

The space of germs of functions α → β at a filter l.

Equations
def Filter.productSetoid {α : Type u_1} (l : Filter α) (ε : αType u_5) :
Setoid ((a : α) → ε a)

Setoid used to define the filter product. This is a dependent version of Filter.germSetoid.

Equations
def Filter.Product {α : Type u_1} (l : Filter α) (ε : αType u_5) :
Type (max u_1 u_5)

The filter product (a : α) → ε a at a filter l. This is a dependent version of Filter.Germ.

Equations
instance Filter.Product.coeTC {α : Type u_1} {l : Filter α} {ε : αType u_5} :
CoeTC ((a : α) → ε a) (l.Product ε)
Equations
instance Filter.Product.instInhabited {α : Type u_1} {l : Filter α} {ε : αType u_5} [(a : α) → Inhabited (ε a)] :
Equations
def Filter.Germ.ofFun {α : Type u_1} {β : Type u_2} {l : Filter α} :
(αβ)l.Germ β
Equations
instance Filter.Germ.instCoeTCForall {α : Type u_1} {β : Type u_2} {l : Filter α} :
CoeTC (αβ) (l.Germ β)
Equations
def Filter.Germ.const {α : Type u_1} {β : Type u_2} {l : Filter α} (b : β) :
l.Germ β
Equations
  • b = fun (x : α) => b
instance Filter.Germ.coeTC {α : Type u_1} {β : Type u_2} {l : Filter α} :
CoeTC β (l.Germ β)
Equations
def Filter.Germ.IsConstant {α : Type u_1} {β : Type u_2} {l : Filter α} (P : l.Germ β) :

A germ P of functions α → β is constant w.r.t. l.

Equations
theorem Filter.Germ.isConstant_coe {α : Type u_1} {β : Type u_2} {f : αβ} {l : Filter α} {b : β} (h : ∀ (x' : α), f x' = b) :
(↑f).IsConstant
@[simp]
theorem Filter.Germ.isConstant_coe_const {α : Type u_1} {β : Type u_2} {l : Filter α} {b : β} :
(↑fun (x : α) => b).IsConstant
theorem Filter.Germ.isConstant_comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} {l : Filter α} {f : αβ} {g : βγ} (h : (↑f).IsConstant) :
(↑(g f)).IsConstant

If f : α → β is constant w.r.t. l and g : β → γ, then g ∘ f : α → γ also is.

@[simp]
theorem Filter.Germ.quot_mk_eq_coe {α : Type u_1} {β : Type u_2} (l : Filter α) (f : αβ) :
Quot.mk (⇑(l.germSetoid β)) f = f
@[simp]
theorem Filter.Germ.mk'_eq_coe {α : Type u_1} {β : Type u_2} (l : Filter α) (f : αβ) :
theorem Filter.Germ.inductionOn {α : Type u_1} {β : Type u_2} {l : Filter α} (f : l.Germ β) {p : l.Germ βProp} (h : ∀ (f : αβ), p f) :
p f
theorem Filter.Germ.inductionOn₂ {α : Type u_1} {β : Type u_2} {γ : Type u_3} {l : Filter α} (f : l.Germ β) (g : l.Germ γ) {p : l.Germ βl.Germ γProp} (h : ∀ (f : αβ) (g : αγ), p f g) :
p f g
theorem Filter.Germ.inductionOn₃ {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} {l : Filter α} (f : l.Germ β) (g : l.Germ γ) (h : l.Germ δ) {p : l.Germ βl.Germ γl.Germ δProp} (H : ∀ (f : αβ) (g : αγ) (h : αδ), p f g h) :
p f g h
def Filter.Germ.map' {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} {l : Filter α} {lc : Filter γ} (F : (αβ)γδ) (hF : Relator.LiftFun l.EventuallyEq lc.EventuallyEq F F) :
l.Germ βlc.Germ δ

Given a map F : (α → β) → (γ → δ) that sends functions eventually equal at l to functions eventually equal at lc, returns a map from Germ l β to Germ lc δ.

Equations
def Filter.Germ.liftOn {α : Type u_1} {β : Type u_2} {l : Filter α} {γ : Sort u_5} (f : l.Germ β) (F : (αβ)γ) (hF : Relator.LiftFun l.EventuallyEq (fun (x1 x2 : γ) => x1 = x2) F F) :
γ

Given a germ f : Germ l β and a function F : (α → β) → γ sending eventually equal functions to the same value, returns the value F takes on functions having germ f at l.

Equations
@[simp]
theorem Filter.Germ.map'_coe {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} {l : Filter α} {lc : Filter γ} (F : (αβ)γδ) (hF : Relator.LiftFun l.EventuallyEq lc.EventuallyEq F F) (f : αβ) :
map' F hF f = (F f)
@[simp]
theorem Filter.Germ.coe_eq {α : Type u_1} {β : Type u_2} {l : Filter α} {f g : αβ} :
f = g f =ᶠ[l] g
theorem Filter.EventuallyEq.germ_eq {α : Type u_1} {β : Type u_2} {l : Filter α} {f g : αβ} :
f =ᶠ[l] gf = g

Alias of the reverse direction of Filter.Germ.coe_eq.

def Filter.Germ.map {α : Type u_1} {β : Type u_2} {γ : Type u_3} {l : Filter α} (op : βγ) :
l.Germ βl.Germ γ

Lift a function β → γ to a function Germ l β → Germ l γ.

Equations
@[simp]
theorem Filter.Germ.map_coe {α : Type u_1} {β : Type u_2} {γ : Type u_3} {l : Filter α} (op : βγ) (f : αβ) :
map op f = ↑(op f)
@[simp]
theorem Filter.Germ.map_id {α : Type u_1} {β : Type u_2} {l : Filter α} :
theorem Filter.Germ.map_map {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} {l : Filter α} (op₁ : γδ) (op₂ : βγ) (f : l.Germ β) :
map op₁ (map op₂ f) = map (op₁ op₂) f
def Filter.Germ.map₂ {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} {l : Filter α} (op : βγδ) :
l.Germ βl.Germ γl.Germ δ

Lift a binary function β → γ → δ to a function Germ l β → Germ l γ → Germ l δ.

Equations
@[simp]
theorem Filter.Germ.map₂_coe {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} {l : Filter α} (op : βγδ) (f : αβ) (g : αγ) :
map₂ op f g = fun (x : α) => op (f x) (g x)
def Filter.Germ.Tendsto {α : Type u_1} {β : Type u_2} {l : Filter α} (f : l.Germ β) (lb : Filter β) :

A germ at l of maps from α to β tends to lb : Filter β if it is represented by a map which tends to lb along l.

Equations
@[simp]
theorem Filter.Germ.coe_tendsto {α : Type u_1} {β : Type u_2} {l : Filter α} {f : αβ} {lb : Filter β} :
(↑f).Tendsto lb Tendsto f l lb
theorem Filter.Tendsto.germ_tendsto {α : Type u_1} {β : Type u_2} {l : Filter α} {f : αβ} {lb : Filter β} :
Tendsto f l lb(↑f).Tendsto lb

Alias of the reverse direction of Filter.Germ.coe_tendsto.

def Filter.Germ.compTendsto' {α : Type u_1} {β : Type u_2} {γ : Type u_3} {l : Filter α} (f : l.Germ β) {lc : Filter γ} (g : lc.Germ α) (hg : g.Tendsto l) :
lc.Germ β

Given two germs f : Germ l β, and g : Germ lc α, where l : Filter α, if g tends to l, then the composition f ∘ g is well-defined as a germ at lc.

Equations
@[simp]
theorem Filter.Germ.coe_compTendsto' {α : Type u_1} {β : Type u_2} {γ : Type u_3} {l : Filter α} (f : αβ) {lc : Filter γ} {g : lc.Germ α} (hg : g.Tendsto l) :
(↑f).compTendsto' g hg = map f g
def Filter.Germ.compTendsto {α : Type u_1} {β : Type u_2} {γ : Type u_3} {l : Filter α} (f : l.Germ β) {lc : Filter γ} (g : γα) (hg : Tendsto g lc l) :
lc.Germ β

Given a germ f : Germ l β and a function g : γ → α, where l : Filter α, if g tends to l along lc : Filter γ, then the composition f ∘ g is well-defined as a germ at lc.

Equations
@[simp]
theorem Filter.Germ.coe_compTendsto {α : Type u_1} {β : Type u_2} {γ : Type u_3} {l : Filter α} (f : αβ) {lc : Filter γ} {g : γα} (hg : Tendsto g lc l) :
(↑f).compTendsto g hg = ↑(f g)
@[simp]
theorem Filter.Germ.compTendsto'_coe {α : Type u_1} {β : Type u_2} {γ : Type u_3} {l : Filter α} (f : l.Germ β) {lc : Filter γ} {g : γα} (hg : Tendsto g lc l) :
f.compTendsto' g = f.compTendsto g hg
theorem Filter.Germ.Filter.Tendsto.congr_germ {α : Type u_1} {β : Type u_2} {γ : Type u_3} {f g : βγ} {l : Filter α} {l' : Filter β} (h : f =ᶠ[l'] g) {φ : αβ} ( : Tendsto φ l l') :
↑(f φ) = ↑(g φ)
theorem Filter.Germ.isConstant_comp_tendsto {α : Type u_1} {β : Type u_2} {γ : Type u_3} {l : Filter α} {f : αβ} {lc : Filter γ} {g : γα} (hf : (↑f).IsConstant) (hg : Tendsto g lc l) :
(↑(f g)).IsConstant
theorem Filter.Germ.isConstant_compTendsto {α : Type u_1} {β : Type u_2} {γ : Type u_3} {l : Filter α} {f : l.Germ β} {lc : Filter γ} {g : γα} (hf : f.IsConstant) (hg : Tendsto g lc l) :

If a germ f : Germ l β is constant, where l : Filter α, and a function g : γ → α tends to l along lc : Filter γ, the germ of the composition f ∘ g is also constant.

@[simp]
theorem Filter.Germ.const_inj {α : Type u_1} {β : Type u_2} {l : Filter α} [l.NeBot] {a b : β} :
a = b a = b
@[simp]
theorem Filter.Germ.map_const {α : Type u_1} {β : Type u_2} {γ : Type u_3} (l : Filter α) (a : β) (f : βγ) :
map f a = (f a)
@[simp]
theorem Filter.Germ.map₂_const {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} (l : Filter α) (b : β) (c : γ) (f : βγδ) :
map₂ f b c = (f b c)
@[simp]
theorem Filter.Germ.const_compTendsto {α : Type u_1} {β : Type u_2} {γ : Type u_3} {l : Filter α} (b : β) {lc : Filter γ} {g : γα} (hg : Tendsto g lc l) :
(↑b).compTendsto g hg = b
@[simp]
theorem Filter.Germ.const_compTendsto' {α : Type u_1} {β : Type u_2} {γ : Type u_3} {l : Filter α} (b : β) {lc : Filter γ} {g : lc.Germ α} (hg : g.Tendsto l) :
(↑b).compTendsto' g hg = b
def Filter.Germ.LiftPred {α : Type u_1} {β : Type u_2} {l : Filter α} (p : βProp) (f : l.Germ β) :

Lift a predicate on β to Germ l β.

Equations
@[simp]
theorem Filter.Germ.liftPred_coe {α : Type u_1} {β : Type u_2} {l : Filter α} {p : βProp} {f : αβ} :
LiftPred p f ∀ᶠ (x : α) in l, p (f x)
theorem Filter.Germ.liftPred_const {α : Type u_1} {β : Type u_2} {l : Filter α} {p : βProp} {x : β} (hx : p x) :
LiftPred p x
@[simp]
theorem Filter.Germ.liftPred_const_iff {α : Type u_1} {β : Type u_2} {l : Filter α} [l.NeBot] {p : βProp} {x : β} :
LiftPred p x p x
def Filter.Germ.LiftRel {α : Type u_1} {β : Type u_2} {γ : Type u_3} {l : Filter α} (r : βγProp) (f : l.Germ β) (g : l.Germ γ) :

Lift a relation r : β → γ → Prop to Germ l β → Germ l γ → Prop.

Equations
@[simp]
theorem Filter.Germ.liftRel_coe {α : Type u_1} {β : Type u_2} {γ : Type u_3} {l : Filter α} {r : βγProp} {f : αβ} {g : αγ} :
LiftRel r f g ∀ᶠ (x : α) in l, r (f x) (g x)
theorem Filter.Germ.liftRel_const {α : Type u_1} {β : Type u_2} {γ : Type u_3} {l : Filter α} {r : βγProp} {x : β} {y : γ} (h : r x y) :
LiftRel r x y
@[simp]
theorem Filter.Germ.liftRel_const_iff {α : Type u_1} {β : Type u_2} {γ : Type u_3} {l : Filter α} [l.NeBot] {r : βγProp} {x : β} {y : γ} :
LiftRel r x y r x y
instance Filter.Germ.instInhabited {α : Type u_1} {β : Type u_2} {l : Filter α} [Inhabited β] :
Equations
instance Filter.Germ.instMul {α : Type u_1} {l : Filter α} {M : Type u_5} [Mul M] :
Mul (l.Germ M)
Equations
instance Filter.Germ.instAdd {α : Type u_1} {l : Filter α} {M : Type u_5} [Add M] :
Add (l.Germ M)
Equations
@[simp]
theorem Filter.Germ.coe_mul {α : Type u_1} {l : Filter α} {M : Type u_5} [Mul M] (f g : αM) :
↑(f * g) = f * g
@[simp]
theorem Filter.Germ.coe_add {α : Type u_1} {l : Filter α} {M : Type u_5} [Add M] (f g : αM) :
↑(f + g) = f + g
instance Filter.Germ.instOne {α : Type u_1} {l : Filter α} {M : Type u_5} [One M] :
One (l.Germ M)
Equations
instance Filter.Germ.instZero {α : Type u_1} {l : Filter α} {M : Type u_5} [Zero M] :
Zero (l.Germ M)
Equations
@[simp]
theorem Filter.Germ.coe_one {α : Type u_1} {l : Filter α} {M : Type u_5} [One M] :
1 = 1
@[simp]
theorem Filter.Germ.coe_zero {α : Type u_1} {l : Filter α} {M : Type u_5} [Zero M] :
0 = 0
instance Filter.Germ.instSemigroup {α : Type u_1} {l : Filter α} {M : Type u_5} [Semigroup M] :
Equations
instance Filter.Germ.instAddSemigroup {α : Type u_1} {l : Filter α} {M : Type u_5} [AddSemigroup M] :
Equations
instance Filter.Germ.instCommSemigroup {α : Type u_1} {l : Filter α} {M : Type u_5} [CommSemigroup M] :
Equations
instance Filter.Germ.instAddCommSemigroup {α : Type u_1} {l : Filter α} {M : Type u_5} [AddCommSemigroup M] :
Equations
instance Filter.Germ.instIsLeftCancelMul {α : Type u_1} {l : Filter α} {M : Type u_5} [Mul M] [IsLeftCancelMul M] :
instance Filter.Germ.instIsAddLeftCancel {α : Type u_1} {l : Filter α} {M : Type u_5} [Add M] [IsLeftCancelAdd M] :
instance Filter.Germ.instIsRightCancelMul {α : Type u_1} {l : Filter α} {M : Type u_5} [Mul M] [IsRightCancelMul M] :
instance Filter.Germ.instIsAddRightCancel {α : Type u_1} {l : Filter α} {M : Type u_5} [Add M] [IsRightCancelAdd M] :
instance Filter.Germ.instIsCancelMul {α : Type u_1} {l : Filter α} {M : Type u_5} [Mul M] [IsCancelMul M] :
instance Filter.Germ.instIsAddCancel {α : Type u_1} {l : Filter α} {M : Type u_5} [Add M] [IsCancelAdd M] :
Equations
Equations
instance Filter.Germ.instMulOneClass {α : Type u_1} {l : Filter α} {M : Type u_5} [MulOneClass M] :
Equations
instance Filter.Germ.instAddZeroClass {α : Type u_1} {l : Filter α} {M : Type u_5} [AddZeroClass M] :
Equations
instance Filter.Germ.instSMul {α : Type u_1} {l : Filter α} {M : Type u_5} {G : Type u_6} [SMul M G] :
SMul M (l.Germ G)
Equations
instance Filter.Germ.instVAdd {α : Type u_1} {l : Filter α} {M : Type u_5} {G : Type u_6} [VAdd M G] :
VAdd M (l.Germ G)
Equations
instance Filter.Germ.instPow {α : Type u_1} {l : Filter α} {M : Type u_5} {G : Type u_6} [Pow G M] :
Pow (l.Germ G) M
Equations
@[simp]
theorem Filter.Germ.coe_smul {α : Type u_1} {l : Filter α} {M : Type u_5} {G : Type u_6} [SMul M G] (n : M) (f : αG) :
↑(n f) = n f
@[simp]
theorem Filter.Germ.coe_vadd {α : Type u_1} {l : Filter α} {M : Type u_5} {G : Type u_6} [VAdd M G] (n : M) (f : αG) :
↑(n +ᵥ f) = n +ᵥ f
@[simp]
theorem Filter.Germ.const_smul {α : Type u_1} {l : Filter α} {M : Type u_5} {G : Type u_6} [SMul M G] (n : M) (a : G) :
↑(n a) = n a
@[simp]
theorem Filter.Germ.const_vadd {α : Type u_1} {l : Filter α} {M : Type u_5} {G : Type u_6} [VAdd M G] (n : M) (a : G) :
↑(n +ᵥ a) = n +ᵥ a
@[simp]
theorem Filter.Germ.coe_pow {α : Type u_1} {l : Filter α} {M : Type u_5} {G : Type u_6} [Pow G M] (f : αG) (n : M) :
↑(f ^ n) = f ^ n
@[simp]
theorem Filter.Germ.coe_nsmul {α : Type u_1} {l : Filter α} {M : Type u_5} {G : Type u_6} [SMul M G] (f : αG) (n : M) :
↑(n f) = n f
@[simp]
theorem Filter.Germ.const_pow {α : Type u_1} {l : Filter α} {M : Type u_5} {G : Type u_6} [Pow G M] (a : G) (n : M) :
↑(a ^ n) = a ^ n
@[simp]
theorem Filter.Germ.const_nsmul {α : Type u_1} {l : Filter α} {M : Type u_5} {G : Type u_6} [SMul M G] (a : G) (n : M) :
↑(n a) = n a
instance Filter.Germ.instMonoid {α : Type u_1} {l : Filter α} {M : Type u_5} [Monoid M] :
Monoid (l.Germ M)
Equations
  • One or more equations did not get rendered due to their size.
instance Filter.Germ.instAddMonoid {α : Type u_1} {l : Filter α} {M : Type u_5} [AddMonoid M] :
Equations
  • One or more equations did not get rendered due to their size.
def Filter.Germ.coeMulHom {α : Type u_1} {M : Type u_5} [Monoid M] (l : Filter α) :
(αM) →* l.Germ M

Coercion from functions to germs as a monoid homomorphism.

Equations
def Filter.Germ.coeAddHom {α : Type u_1} {M : Type u_5} [AddMonoid M] (l : Filter α) :
(αM) →+ l.Germ M

Coercion from functions to germs as an additive monoid homomorphism.

Equations
@[simp]
theorem Filter.Germ.coe_coeMulHom {α : Type u_1} {l : Filter α} {M : Type u_5} [Monoid M] :
@[simp]
theorem Filter.Germ.coe_coeAddHom {α : Type u_1} {l : Filter α} {M : Type u_5} [AddMonoid M] :
instance Filter.Germ.instCommMonoid {α : Type u_1} {l : Filter α} {M : Type u_5} [CommMonoid M] :
Equations
instance Filter.Germ.instAddCommMonoid {α : Type u_1} {l : Filter α} {M : Type u_5} [AddCommMonoid M] :
Equations
instance Filter.Germ.instNatCast {α : Type u_1} {l : Filter α} {M : Type u_5} [NatCast M] :
Equations
@[simp]
theorem Filter.Germ.natCast_def {α : Type u_1} {l : Filter α} {M : Type u_5} [NatCast M] (n : ) :
(↑fun (x : α) => n) = n
@[simp]
theorem Filter.Germ.const_nat {α : Type u_1} {l : Filter α} {M : Type u_5} [NatCast M] (n : ) :
n = n
@[simp]
theorem Filter.Germ.coe_ofNat {α : Type u_1} {l : Filter α} {M : Type u_5} [NatCast M] (n : ) [n.AtLeastTwo] :
@[simp]
theorem Filter.Germ.const_ofNat {α : Type u_1} {l : Filter α} {M : Type u_5} [NatCast M] (n : ) [n.AtLeastTwo] :
instance Filter.Germ.instIntCast {α : Type u_1} {l : Filter α} {M : Type u_5} [IntCast M] :
Equations
@[simp]
theorem Filter.Germ.intCast_def {α : Type u_1} {l : Filter α} {M : Type u_5} [IntCast M] (n : ) :
(↑fun (x : α) => n) = n
instance Filter.Germ.instAddMonoidWithOne {α : Type u_1} {l : Filter α} {M : Type u_5} [AddMonoidWithOne M] :
Equations
instance Filter.Germ.instInv {α : Type u_1} {l : Filter α} {G : Type u_6} [Inv G] :
Inv (l.Germ G)
Equations
instance Filter.Germ.instNeg {α : Type u_1} {l : Filter α} {G : Type u_6} [Neg G] :
Neg (l.Germ G)
Equations
@[simp]
theorem Filter.Germ.coe_inv {α : Type u_1} {l : Filter α} {G : Type u_6} [Inv G] (f : αG) :
f⁻¹ = (↑f)⁻¹
@[simp]
theorem Filter.Germ.coe_neg {α : Type u_1} {l : Filter α} {G : Type u_6} [Neg G] (f : αG) :
↑(-f) = -f
@[simp]
theorem Filter.Germ.const_inv {α : Type u_1} {l : Filter α} {G : Type u_6} [Inv G] (a : G) :
a⁻¹ = (↑a)⁻¹
@[simp]
theorem Filter.Germ.const_neg {α : Type u_1} {l : Filter α} {G : Type u_6} [Neg G] (a : G) :
↑(-a) = -a
instance Filter.Germ.instDiv {α : Type u_1} {l : Filter α} {M : Type u_5} [Div M] :
Div (l.Germ M)
Equations
instance Filter.Germ.instSub {α : Type u_1} {l : Filter α} {M : Type u_5} [Sub M] :
Sub (l.Germ M)
Equations
@[simp]
theorem Filter.Germ.coe_div {α : Type u_1} {l : Filter α} {M : Type u_5} [Div M] (f g : αM) :
↑(f / g) = f / g
@[simp]
theorem Filter.Germ.coe_sub {α : Type u_1} {l : Filter α} {M : Type u_5} [Sub M] (f g : αM) :
↑(f - g) = f - g
@[simp]
theorem Filter.Germ.const_div {α : Type u_1} {l : Filter α} {M : Type u_5} [Div M] (a b : M) :
↑(a / b) = a / b
@[simp]
theorem Filter.Germ.const_sub {α : Type u_1} {l : Filter α} {M : Type u_5} [Sub M] (a b : M) :
↑(a - b) = a - b
instance Filter.Germ.instInvolutiveInv {α : Type u_1} {l : Filter α} {G : Type u_6} [InvolutiveInv G] :
Equations
instance Filter.Germ.instInvolutiveNeg {α : Type u_1} {l : Filter α} {G : Type u_6} [InvolutiveNeg G] :
Equations
instance Filter.Germ.instHasDistribNeg {α : Type u_1} {l : Filter α} {G : Type u_6} [Mul G] [HasDistribNeg G] :
Equations
instance Filter.Germ.instInvOneClass {α : Type u_1} {l : Filter α} {G : Type u_6} [InvOneClass G] :
Equations
instance Filter.Germ.instNegZeroClass {α : Type u_1} {l : Filter α} {G : Type u_6} [NegZeroClass G] :
Equations
instance Filter.Germ.instDivInvMonoid {α : Type u_1} {l : Filter α} {G : Type u_6} [DivInvMonoid G] :
Equations
  • One or more equations did not get rendered due to their size.
instance Filter.Germ.subNegMonoid {α : Type u_1} {l : Filter α} {G : Type u_6} [SubNegMonoid G] :
Equations
  • One or more equations did not get rendered due to their size.
instance Filter.Germ.instDivisionMonoid {α : Type u_1} {l : Filter α} {G : Type u_6} [DivisionMonoid G] :
Equations
Equations
instance Filter.Germ.instGroup {α : Type u_1} {l : Filter α} {G : Type u_6} [Group G] :
Group (l.Germ G)
Equations
instance Filter.Germ.instAddGroup {α : Type u_1} {l : Filter α} {G : Type u_6} [AddGroup G] :
Equations
instance Filter.Germ.instCommGroup {α : Type u_1} {l : Filter α} {G : Type u_6} [CommGroup G] :
Equations
instance Filter.Germ.instAddCommGroup {α : Type u_1} {l : Filter α} {G : Type u_6} [AddCommGroup G] :
Equations
instance Filter.Germ.instAddGroupWithOne {α : Type u_1} {l : Filter α} {G : Type u_6} [AddGroupWithOne G] :
Equations
  • One or more equations did not get rendered due to their size.
instance Filter.Germ.instNontrivial {α : Type u_1} {l : Filter α} {R : Type u_5} [Nontrivial R] [l.NeBot] :
instance Filter.Germ.instMulZeroClass {α : Type u_1} {l : Filter α} {R : Type u_5} [MulZeroClass R] :
Equations
instance Filter.Germ.instMulZeroOneClass {α : Type u_1} {l : Filter α} {R : Type u_5} [MulZeroOneClass R] :
Equations
instance Filter.Germ.instMonoidWithZero {α : Type u_1} {l : Filter α} {R : Type u_5} [MonoidWithZero R] :
Equations
instance Filter.Germ.instDistrib {α : Type u_1} {l : Filter α} {R : Type u_5} [Distrib R] :
Equations
Equations
Equations
instance Filter.Germ.instNonAssocSemiring {α : Type u_1} {l : Filter α} {R : Type u_5} [NonAssocSemiring R] :
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • One or more equations did not get rendered due to their size.
instance Filter.Germ.instNonUnitalRing {α : Type u_1} {l : Filter α} {R : Type u_5} [NonUnitalRing R] :
Equations
instance Filter.Germ.instNonAssocRing {α : Type u_1} {l : Filter α} {R : Type u_5} [NonAssocRing R] :
Equations
  • One or more equations did not get rendered due to their size.
instance Filter.Germ.instSemiring {α : Type u_1} {l : Filter α} {R : Type u_5} [Semiring R] :
Equations
  • One or more equations did not get rendered due to their size.
instance Filter.Germ.instRing {α : Type u_1} {l : Filter α} {R : Type u_5} [Ring R] :
Ring (l.Germ R)
Equations
  • One or more equations did not get rendered due to their size.
instance Filter.Germ.instCommSemiring {α : Type u_1} {l : Filter α} {R : Type u_5} [CommSemiring R] :
Equations
Equations
instance Filter.Germ.instCommRing {α : Type u_1} {l : Filter α} {R : Type u_5} [CommRing R] :
Equations
def Filter.Germ.coeRingHom {α : Type u_1} {R : Type u_5} [Semiring R] (l : Filter α) :
(αR) →+* l.Germ R

Coercion (α → R) → Germ l R as a RingHom.

Equations
@[simp]
theorem Filter.Germ.coe_coeRingHom {α : Type u_1} {l : Filter α} {R : Type u_5} [Semiring R] :
instance Filter.Germ.instSMul' {α : Type u_1} {β : Type u_2} {l : Filter α} {M : Type u_5} [SMul M β] :
SMul (l.Germ M) (l.Germ β)
Equations
instance Filter.Germ.instVAdd' {α : Type u_1} {β : Type u_2} {l : Filter α} {M : Type u_5} [VAdd M β] :
VAdd (l.Germ M) (l.Germ β)
Equations
@[simp]
theorem Filter.Germ.coe_smul' {α : Type u_1} {β : Type u_2} {l : Filter α} {M : Type u_5} [SMul M β] (c : αM) (f : αβ) :
↑(c f) = c f
@[simp]
theorem Filter.Germ.coe_vadd' {α : Type u_1} {β : Type u_2} {l : Filter α} {M : Type u_5} [VAdd M β] (c : αM) (f : αβ) :
↑(c +ᵥ f) = c +ᵥ f
instance Filter.Germ.instMulAction {α : Type u_1} {β : Type u_2} {l : Filter α} {M : Type u_5} [Monoid M] [MulAction M β] :
MulAction M (l.Germ β)
Equations
instance Filter.Germ.instAddAction {α : Type u_1} {β : Type u_2} {l : Filter α} {M : Type u_5} [AddMonoid M] [AddAction M β] :
AddAction M (l.Germ β)
Equations
instance Filter.Germ.instMulAction' {α : Type u_1} {β : Type u_2} {l : Filter α} {M : Type u_5} [Monoid M] [MulAction M β] :
MulAction (l.Germ M) (l.Germ β)
Equations
instance Filter.Germ.instAddAction' {α : Type u_1} {β : Type u_2} {l : Filter α} {M : Type u_5} [AddMonoid M] [AddAction M β] :
AddAction (l.Germ M) (l.Germ β)
Equations
instance Filter.Germ.instDistribMulAction {α : Type u_1} {l : Filter α} {M : Type u_5} {N : Type u_6} [Monoid M] [AddMonoid N] [DistribMulAction M N] :
Equations
instance Filter.Germ.instDistribMulAction' {α : Type u_1} {l : Filter α} {M : Type u_5} {N : Type u_6} [Monoid M] [AddMonoid N] [DistribMulAction M N] :
Equations
instance Filter.Germ.instModule {α : Type u_1} {l : Filter α} {M : Type u_5} {R : Type u_7} [Semiring R] [AddCommMonoid M] [Module R M] :
Module R (l.Germ M)
Equations
instance Filter.Germ.instModule' {α : Type u_1} {l : Filter α} {M : Type u_5} {R : Type u_7} [Semiring R] [AddCommMonoid M] [Module R M] :
Module (l.Germ R) (l.Germ M)
Equations
instance Filter.Germ.instLE {α : Type u_1} {β : Type u_2} {l : Filter α} [LE β] :
LE (l.Germ β)
Equations
theorem Filter.Germ.le_def {α : Type u_1} {β : Type u_2} {l : Filter α} [LE β] :
(fun (x1 x2 : l.Germ β) => x1 x2) = LiftRel fun (x1 x2 : β) => x1 x2
@[simp]
theorem Filter.Germ.coe_le {α : Type u_1} {β : Type u_2} {l : Filter α} {f g : αβ} [LE β] :
f g f ≤ᶠ[l] g
theorem Filter.Germ.coe_nonneg {α : Type u_1} {β : Type u_2} {l : Filter α} [LE β] [Zero β] {f : αβ} :
0 f ∀ᶠ (x : α) in l, 0 f x
theorem Filter.Germ.const_le {α : Type u_1} {β : Type u_2} {l : Filter α} [LE β] {x y : β} :
x yx y
@[simp]
theorem Filter.Germ.const_le_iff {α : Type u_1} {β : Type u_2} {l : Filter α} [LE β] [l.NeBot] {x y : β} :
x y x y
instance Filter.Germ.instPreorder {α : Type u_1} {β : Type u_2} {l : Filter α} [Preorder β] :
Preorder (l.Germ β)
Equations
instance Filter.Germ.instPartialOrder {α : Type u_1} {β : Type u_2} {l : Filter α} [PartialOrder β] :
Equations
instance Filter.Germ.instBot {α : Type u_1} {β : Type u_2} {l : Filter α} [Bot β] :
Bot (l.Germ β)
Equations
instance Filter.Germ.instTop {α : Type u_1} {β : Type u_2} {l : Filter α} [Top β] :
Top (l.Germ β)
Equations
@[simp]
theorem Filter.Germ.const_bot {α : Type u_1} {β : Type u_2} {l : Filter α} [Bot β] :
=
@[simp]
theorem Filter.Germ.const_top {α : Type u_1} {β : Type u_2} {l : Filter α} [Top β] :
=
instance Filter.Germ.instOrderBot {α : Type u_1} {β : Type u_2} {l : Filter α} [LE β] [OrderBot β] :
OrderBot (l.Germ β)
Equations
instance Filter.Germ.instOrderTop {α : Type u_1} {β : Type u_2} {l : Filter α} [LE β] [OrderTop β] :
OrderTop (l.Germ β)
Equations
instance Filter.Germ.instBoundedOrder {α : Type u_1} {β : Type u_2} {l : Filter α} [LE β] [BoundedOrder β] :
Equations
instance Filter.Germ.instSup {α : Type u_1} {β : Type u_2} {l : Filter α} [Max β] :
Max (l.Germ β)
Equations
instance Filter.Germ.instInf {α : Type u_1} {β : Type u_2} {l : Filter α} [Min β] :
Min (l.Germ β)
Equations
@[simp]
theorem Filter.Germ.const_sup {α : Type u_1} {β : Type u_2} {l : Filter α} [Max β] (a b : β) :
(ab) = ab
@[simp]
theorem Filter.Germ.const_inf {α : Type u_1} {β : Type u_2} {l : Filter α} [Min β] (a b : β) :
(ab) = ab
instance Filter.Germ.instSemilatticeSup {α : Type u_1} {β : Type u_2} {l : Filter α} [SemilatticeSup β] :
Equations
instance Filter.Germ.instSemilatticeInf {α : Type u_1} {β : Type u_2} {l : Filter α} [SemilatticeInf β] :
Equations
instance Filter.Germ.instLattice {α : Type u_1} {β : Type u_2} {l : Filter α} [Lattice β] :
Lattice (l.Germ β)
Equations
instance Filter.Germ.instDistribLattice {α : Type u_1} {β : Type u_2} {l : Filter α} [DistribLattice β] :
Equations
instance Filter.Germ.instExistsMulOfLE {α : Type u_1} {β : Type u_2} {l : Filter α} [Mul β] [LE β] [ExistsMulOfLE β] :
instance Filter.Germ.instExistsAddOfLE {α : Type u_1} {β : Type u_2} {l : Filter α} [Add β] [LE β] [ExistsAddOfLE β] :