Convergence to ±infinity in ordered rings #
theorem
Filter.Tendsto.atTop_mul_atTop₀
{α : Type u_1}
{β : Type u_2}
[Semiring α]
[PartialOrder α]
[IsOrderedRing α]
{l : Filter β}
{f g : β → α}
(hf : Tendsto f l atTop)
(hg : Tendsto g l atTop)
:
theorem
Filter.tendsto_mul_self_atTop
{α : Type u_1}
[Semiring α]
[PartialOrder α]
[IsOrderedRing α]
:
theorem
Filter.tendsto_pow_atTop
{α : Type u_1}
[Semiring α]
[PartialOrder α]
[IsOrderedRing α]
{n : ℕ}
(hn : n ≠ 0)
:
The monomial function x^n
tends to +∞
at +∞
for any positive natural n
.
A version for positive real powers exists as tendsto_rpow_atTop
.
theorem
Filter.Tendsto.atTop_mul_atBot₀
{α : Type u_1}
{β : Type u_2}
[Ring α]
[PartialOrder α]
[IsOrderedRing α]
{l : Filter β}
{f g : β → α}
(hf : Tendsto f l atTop)
(hg : Tendsto g l atBot)
:
@[deprecated Filter.Tendsto.atTop_mul_atBot₀ (since := "2025-02-13")]
theorem
Filter.Tendsto.atTop_mul_atBot
{α : Type u_1}
{β : Type u_2}
[Ring α]
[PartialOrder α]
[IsOrderedRing α]
{l : Filter β}
{f g : β → α}
(hf : Tendsto f l atTop)
(hg : Tendsto g l atBot)
:
Alias of Filter.Tendsto.atTop_mul_atBot₀
.
theorem
Filter.Tendsto.atBot_mul_atTop₀
{α : Type u_1}
{β : Type u_2}
[Ring α]
[PartialOrder α]
[IsOrderedRing α]
{l : Filter β}
{f g : β → α}
(hf : Tendsto f l atBot)
(hg : Tendsto g l atTop)
:
@[deprecated Filter.Tendsto.atBot_mul_atTop₀ (since := "2025-02-13")]
theorem
Filter.Tendsto.atBot_mul_atTop
{α : Type u_1}
{β : Type u_2}
[Ring α]
[PartialOrder α]
[IsOrderedRing α]
{l : Filter β}
{f g : β → α}
(hf : Tendsto f l atBot)
(hg : Tendsto g l atTop)
:
Alias of Filter.Tendsto.atBot_mul_atTop₀
.
theorem
Filter.Tendsto.atBot_mul_atBot₀
{α : Type u_1}
{β : Type u_2}
[Ring α]
[PartialOrder α]
[IsOrderedRing α]
{l : Filter β}
{f g : β → α}
(hf : Tendsto f l atBot)
(hg : Tendsto g l atBot)
:
theorem
Filter.Tendsto.atTop_of_const_mul₀
{α : Type u_1}
{β : Type u_2}
[Semiring α]
[LinearOrder α]
[IsStrictOrderedRing α]
{l : Filter β}
{f : β → α}
{c : α}
(hc : 0 < c)
(hf : Tendsto (fun (x : β) => c * f x) l atTop)
:
theorem
Filter.Tendsto.atTop_of_mul_const₀
{α : Type u_1}
{β : Type u_2}
[Semiring α]
[LinearOrder α]
[IsStrictOrderedRing α]
{l : Filter β}
{f : β → α}
{c : α}
(hc : 0 < c)
(hf : Tendsto (fun (x : β) => f x * c) l atTop)
:
@[simp]
theorem
Filter.tendsto_pow_atTop_iff
{α : Type u_1}
[Semiring α]
[LinearOrder α]
[IsStrictOrderedRing α]
{n : ℕ}
:
theorem
Filter.not_tendsto_pow_atTop_atBot
{α : Type u_1}
[Ring α]
[LinearOrder α]
[IsStrictOrderedRing α]
{n : ℕ}
:
theorem
exists_lt_mul_self
{R : Type u_3}
[Semiring R]
[LinearOrder R]
[IsStrictOrderedRing R]
(a : R)
:
theorem
exists_le_mul_self
{R : Type u_3}
[Semiring R]
[LinearOrder R]
[IsStrictOrderedRing R]
(a : R)
: