Convergence to ±infinity in ordered commutative groups #
theorem
Filter.tendsto_atTop_add_left_of_le'
{α : Type u_1}
{G : Type u_2}
[AddCommGroup G]
[PartialOrder G]
[IsOrderedAddMonoid G]
(l : Filter α)
{f g : α → G}
(C : G)
(hf : ∀ᶠ (x : α) in l, C ≤ f x)
(hg : Tendsto g l atTop)
:
theorem
Filter.tendsto_atBot_add_left_of_ge'
{α : Type u_1}
{G : Type u_2}
[AddCommGroup G]
[PartialOrder G]
[IsOrderedAddMonoid G]
(l : Filter α)
{f g : α → G}
(C : G)
(hf : ∀ᶠ (x : α) in l, f x ≤ C)
(hg : Tendsto g l atBot)
:
theorem
Filter.tendsto_atTop_mul_left_of_le
{α : Type u_1}
{G : Type u_2}
[CommGroup G]
[PartialOrder G]
[IsOrderedMonoid G]
(l : Filter α)
{f g : α → G}
(C : G)
(hf : ∀ (x : α), C ≤ f x)
(hg : Tendsto g l atTop)
:
theorem
Filter.tendsto_atTop_add_left_of_le
{α : Type u_1}
{G : Type u_2}
[AddCommGroup G]
[PartialOrder G]
[IsOrderedAddMonoid G]
(l : Filter α)
{f g : α → G}
(C : G)
(hf : ∀ (x : α), C ≤ f x)
(hg : Tendsto g l atTop)
:
theorem
Filter.tendsto_atBot_mul_left_of_ge
{α : Type u_1}
{G : Type u_2}
[CommGroup G]
[PartialOrder G]
[IsOrderedMonoid G]
(l : Filter α)
{f g : α → G}
(C : G)
(hf : ∀ (x : α), f x ≤ C)
(hg : Tendsto g l atBot)
:
theorem
Filter.tendsto_atBot_add_left_of_ge
{α : Type u_1}
{G : Type u_2}
[AddCommGroup G]
[PartialOrder G]
[IsOrderedAddMonoid G]
(l : Filter α)
{f g : α → G}
(C : G)
(hf : ∀ (x : α), f x ≤ C)
(hg : Tendsto g l atBot)
:
theorem
Filter.tendsto_atTop_add_right_of_le'
{α : Type u_1}
{G : Type u_2}
[AddCommGroup G]
[PartialOrder G]
[IsOrderedAddMonoid G]
(l : Filter α)
{f g : α → G}
(C : G)
(hf : Tendsto f l atTop)
(hg : ∀ᶠ (x : α) in l, C ≤ g x)
:
theorem
Filter.tendsto_atBot_add_right_of_ge'
{α : Type u_1}
{G : Type u_2}
[AddCommGroup G]
[PartialOrder G]
[IsOrderedAddMonoid G]
(l : Filter α)
{f g : α → G}
(C : G)
(hf : Tendsto f l atBot)
(hg : ∀ᶠ (x : α) in l, g x ≤ C)
:
theorem
Filter.tendsto_atTop_mul_right_of_le
{α : Type u_1}
{G : Type u_2}
[CommGroup G]
[PartialOrder G]
[IsOrderedMonoid G]
(l : Filter α)
{f g : α → G}
(C : G)
(hf : Tendsto f l atTop)
(hg : ∀ (x : α), C ≤ g x)
:
theorem
Filter.tendsto_atTop_add_right_of_le
{α : Type u_1}
{G : Type u_2}
[AddCommGroup G]
[PartialOrder G]
[IsOrderedAddMonoid G]
(l : Filter α)
{f g : α → G}
(C : G)
(hf : Tendsto f l atTop)
(hg : ∀ (x : α), C ≤ g x)
:
theorem
Filter.tendsto_atBot_mul_right_of_ge
{α : Type u_1}
{G : Type u_2}
[CommGroup G]
[PartialOrder G]
[IsOrderedMonoid G]
(l : Filter α)
{f g : α → G}
(C : G)
(hf : Tendsto f l atBot)
(hg : ∀ (x : α), g x ≤ C)
:
theorem
Filter.tendsto_atBot_add_right_of_ge
{α : Type u_1}
{G : Type u_2}
[AddCommGroup G]
[PartialOrder G]
[IsOrderedAddMonoid G]
(l : Filter α)
{f g : α → G}
(C : G)
(hf : Tendsto f l atBot)
(hg : ∀ (x : α), g x ≤ C)
:
theorem
Filter.tendsto_atTop_mul_const_left
{α : Type u_1}
{G : Type u_2}
[CommGroup G]
[PartialOrder G]
[IsOrderedMonoid G]
(l : Filter α)
{f : α → G}
(C : G)
(hf : Tendsto f l atTop)
:
theorem
Filter.tendsto_atTop_add_const_left
{α : Type u_1}
{G : Type u_2}
[AddCommGroup G]
[PartialOrder G]
[IsOrderedAddMonoid G]
(l : Filter α)
{f : α → G}
(C : G)
(hf : Tendsto f l atTop)
:
theorem
Filter.tendsto_atBot_mul_const_left
{α : Type u_1}
{G : Type u_2}
[CommGroup G]
[PartialOrder G]
[IsOrderedMonoid G]
(l : Filter α)
{f : α → G}
(C : G)
(hf : Tendsto f l atBot)
:
theorem
Filter.tendsto_atBot_add_const_left
{α : Type u_1}
{G : Type u_2}
[AddCommGroup G]
[PartialOrder G]
[IsOrderedAddMonoid G]
(l : Filter α)
{f : α → G}
(C : G)
(hf : Tendsto f l atBot)
:
theorem
Filter.tendsto_atTop_mul_const_right
{α : Type u_1}
{G : Type u_2}
[CommGroup G]
[PartialOrder G]
[IsOrderedMonoid G]
(l : Filter α)
{f : α → G}
(C : G)
(hf : Tendsto f l atTop)
:
theorem
Filter.tendsto_atTop_add_const_right
{α : Type u_1}
{G : Type u_2}
[AddCommGroup G]
[PartialOrder G]
[IsOrderedAddMonoid G]
(l : Filter α)
{f : α → G}
(C : G)
(hf : Tendsto f l atTop)
:
theorem
Filter.tendsto_atBot_mul_const_right
{α : Type u_1}
{G : Type u_2}
[CommGroup G]
[PartialOrder G]
[IsOrderedMonoid G]
(l : Filter α)
{f : α → G}
(C : G)
(hf : Tendsto f l atBot)
:
theorem
Filter.tendsto_atBot_add_const_right
{α : Type u_1}
{G : Type u_2}
[AddCommGroup G]
[PartialOrder G]
[IsOrderedAddMonoid G]
(l : Filter α)
{f : α → G}
(C : G)
(hf : Tendsto f l atBot)
:
theorem
Filter.map_neg_atBot
{G : Type u_2}
[AddCommGroup G]
[PartialOrder G]
[IsOrderedAddMonoid G]
:
theorem
Filter.map_neg_atTop
{G : Type u_2}
[AddCommGroup G]
[PartialOrder G]
[IsOrderedAddMonoid G]
:
theorem
Filter.comap_neg_atBot
{G : Type u_2}
[AddCommGroup G]
[PartialOrder G]
[IsOrderedAddMonoid G]
:
theorem
Filter.comap_neg_atTop
{G : Type u_2}
[AddCommGroup G]
[PartialOrder G]
[IsOrderedAddMonoid G]
:
theorem
Filter.tendsto_inv_atTop_atBot
{G : Type u_2}
[CommGroup G]
[PartialOrder G]
[IsOrderedMonoid G]
:
theorem
Filter.tendsto_neg_atTop_atBot
{G : Type u_2}
[AddCommGroup G]
[PartialOrder G]
[IsOrderedAddMonoid G]
:
theorem
Filter.tendsto_inv_atBot_atTop
{G : Type u_2}
[CommGroup G]
[PartialOrder G]
[IsOrderedMonoid G]
:
theorem
Filter.tendsto_neg_atBot_atTop
{G : Type u_2}
[AddCommGroup G]
[PartialOrder G]
[IsOrderedAddMonoid G]
:
@[simp]
theorem
Filter.tendsto_inv_atTop_iff
{α : Type u_1}
{G : Type u_2}
[CommGroup G]
[PartialOrder G]
[IsOrderedMonoid G]
{l : Filter α}
{f : α → G}
:
@[simp]
theorem
Filter.tendsto_neg_atTop_iff
{α : Type u_1}
{G : Type u_2}
[AddCommGroup G]
[PartialOrder G]
[IsOrderedAddMonoid G]
{l : Filter α}
{f : α → G}
:
@[simp]
theorem
Filter.tendsto_inv_atBot_iff
{α : Type u_1}
{G : Type u_2}
[CommGroup G]
[PartialOrder G]
[IsOrderedMonoid G]
{l : Filter α}
{f : α → G}
:
@[simp]
theorem
Filter.tendsto_neg_atBot_iff
{α : Type u_1}
{G : Type u_2}
[AddCommGroup G]
[PartialOrder G]
[IsOrderedAddMonoid G]
{l : Filter α}
{f : α → G}
:
theorem
Filter.tendsto_mabs_atBot_atTop
{G : Type u_2}
[CommGroup G]
[LinearOrder G]
[IsOrderedMonoid G]
:
$\lim_{x\to\infty^{-1}|x|_m=+\infty$
theorem
Filter.tendsto_abs_atBot_atTop
{G : Type u_2}
[AddCommGroup G]
[LinearOrder G]
[IsOrderedAddMonoid G]
:
@[simp]
@[simp]
theorem
Filter.comap_abs_atTop
{G : Type u_2}
[AddCommGroup G]
[LinearOrder G]
[IsOrderedAddMonoid G]
: