Documentation

Mathlib.Order.Antisymmetrization

Turning a preorder into a partial order #

This file allows to make a preorder into a partial order by quotienting out the elements a, b such that a ≤ b and b ≤ a.

Antisymmetrization is a functor from Preorder to PartialOrder. See Preorder_to_PartialOrder.

Main declarations #

def AntisymmRel {α : Type u_1} (r : ααProp) (a b : α) :

The antisymmetrization relation AntisymmRel r is defined so that AntisymmRel r a b ↔ r a b ∧ r b a.

Equations
theorem antisymmRel_swap {α : Type u_1} (r : ααProp) :
theorem antisymmRel_swap_apply {α : Type u_1} {a b : α} (r : ααProp) :
@[simp]
theorem AntisymmRel.refl {α : Type u_1} (r : ααProp) [IsRefl α r] (a : α) :
@[deprecated AntisymmRel.refl (since := "2025-01-28")]
theorem antisymmRel_refl {α : Type u_1} (r : ααProp) [IsRefl α r] (a : α) :

Alias of AntisymmRel.refl.

theorem AntisymmRel.rfl {α : Type u_1} {r : ααProp} [IsRefl α r] {a : α} :
instance instIsReflAntisymmRel {α : Type u_1} (r : ααProp) [IsRefl α r] :
theorem AntisymmRel.of_eq {α : Type u_1} {r : ααProp} [IsRefl α r] {a b : α} (h : a = b) :
theorem Eq.antisymmRel {α : Type u_1} {r : ααProp} [IsRefl α r] {a b : α} (h : a = b) :

Alias of AntisymmRel.of_eq.

theorem AntisymmRel.symm {α : Type u_1} {a b : α} {r : ααProp} :
AntisymmRel r a bAntisymmRel r b a
instance instIsSymmAntisymmRel {α : Type u_1} {r : ααProp} :
theorem antisymmRel_comm {α : Type u_1} {a b : α} {r : ααProp} :
theorem AntisymmRel.trans {α : Type u_1} {a b c : α} {r : ααProp} [IsTrans α r] (hab : AntisymmRel r a b) (hbc : AntisymmRel r b c) :
instance instIsTransAntisymmRel {α : Type u_1} {r : ααProp} [IsTrans α r] :
instance AntisymmRel.decidableRel {α : Type u_1} {r : ααProp} [DecidableRel r] :
Equations
@[simp]
theorem antisymmRel_iff_eq {α : Type u_1} {a b : α} {r : ααProp} [IsRefl α r] [IsAntisymm α r] :
AntisymmRel r a b a = b
theorem AntisymmRel.eq {α : Type u_1} {a b : α} {r : ααProp} [IsRefl α r] [IsAntisymm α r] :
AntisymmRel r a ba = b

Alias of the forward direction of antisymmRel_iff_eq.

theorem AntisymmRel.le {α : Type u_1} {a b : α} [LE α] (h : AntisymmRel (fun (x1 x2 : α) => x1 x2) a b) :
a b
theorem AntisymmRel.ge {α : Type u_1} {a b : α} [LE α] (h : AntisymmRel (fun (x1 x2 : α) => x1 x2) a b) :
b a
def AntisymmRel.setoid (α : Type u_1) (r : ααProp) [IsPreorder α r] :

The antisymmetrization relation as an equivalence relation.

Equations
@[simp]
theorem AntisymmRel.setoid_r (α : Type u_1) (r : ααProp) [IsPreorder α r] (a b : α) :
(setoid α r) a b = AntisymmRel r a b
def Antisymmetrization (α : Type u_1) (r : ααProp) [IsPreorder α r] :
Type u_1

The partial order derived from a preorder by making pairwise comparable elements equal. This is the quotient by fun a b => a ≤ b ∧ b ≤ a.

Equations
def toAntisymmetrization {α : Type u_1} (r : ααProp) [IsPreorder α r] :
αAntisymmetrization α r

Turn an element into its antisymmetrization.

Equations
noncomputable def ofAntisymmetrization {α : Type u_1} (r : ααProp) [IsPreorder α r] :
Antisymmetrization α rα

Get a representative from the antisymmetrization.

Equations
theorem Antisymmetrization.ind {α : Type u_1} (r : ααProp) [IsPreorder α r] {p : Antisymmetrization α rProp} :
(∀ (a : α), p (toAntisymmetrization r a))∀ (q : Antisymmetrization α r), p q
theorem Antisymmetrization.induction_on {α : Type u_1} (r : ααProp) [IsPreorder α r] {p : Antisymmetrization α rProp} (a : Antisymmetrization α r) (h : ∀ (a : α), p (toAntisymmetrization r a)) :
p a
@[simp]
theorem le_iff_lt_or_antisymmRel {α : Type u_1} {a b : α} [Preorder α] :
a b a < b AntisymmRel (fun (x1 x2 : α) => x1 x2) a b
theorem le_of_le_of_antisymmRel {α : Type u_1} {a b c : α} [Preorder α] (h₁ : a b) (h₂ : AntisymmRel (fun (x1 x2 : α) => x1 x2) b c) :
a c
theorem le_of_antisymmRel_of_le {α : Type u_1} {a b c : α} [Preorder α] (h₁ : AntisymmRel (fun (x1 x2 : α) => x1 x2) a b) (h₂ : b c) :
a c
theorem lt_of_lt_of_antisymmRel {α : Type u_1} {a b c : α} [Preorder α] (h₁ : a < b) (h₂ : AntisymmRel (fun (x1 x2 : α) => x1 x2) b c) :
a < c
theorem lt_of_antisymmRel_of_lt {α : Type u_1} {a b c : α} [Preorder α] (h₁ : AntisymmRel (fun (x1 x2 : α) => x1 x2) a b) (h₂ : b < c) :
a < c
theorem LE.le.lt_or_antisymmRel {α : Type u_1} {a b : α} [Preorder α] :
a ba < b AntisymmRel (fun (x1 x2 : α) => x1 x2) a b

Alias of the forward direction of le_iff_lt_or_antisymmRel.

theorem LE.le.trans_antisymmRel {α : Type u_1} {a b c : α} [Preorder α] (h₁ : a b) (h₂ : AntisymmRel (fun (x1 x2 : α) => x1 x2) b c) :
a c

Alias of le_of_le_of_antisymmRel.

theorem AntisymmRel.trans_le {α : Type u_1} {a b c : α} [Preorder α] (h₁ : AntisymmRel (fun (x1 x2 : α) => x1 x2) a b) (h₂ : b c) :
a c

Alias of le_of_antisymmRel_of_le.

theorem LT.lt.trans_antisymmRel {α : Type u_1} {a b c : α} [Preorder α] (h₁ : a < b) (h₂ : AntisymmRel (fun (x1 x2 : α) => x1 x2) b c) :
a < c

Alias of lt_of_lt_of_antisymmRel.

theorem AntisymmRel.trans_lt {α : Type u_1} {a b c : α} [Preorder α] (h₁ : AntisymmRel (fun (x1 x2 : α) => x1 x2) a b) (h₂ : b < c) :
a < c

Alias of lt_of_antisymmRel_of_lt.

instance instTransLeAntisymmRel {α : Type u_1} [Preorder α] :
Trans (fun (x1 x2 : α) => x1 x2) (AntisymmRel fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2
Equations
instance instTransAntisymmRelLe {α : Type u_1} [Preorder α] :
Trans (AntisymmRel fun (x1 x2 : α) => x1 x2) (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2
Equations
instance instTransLtAntisymmRelLe {α : Type u_1} [Preorder α] :
Trans (fun (x1 x2 : α) => x1 < x2) (AntisymmRel fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 < x2
Equations
instance instTransAntisymmRelLeLt {α : Type u_1} [Preorder α] :
Trans (AntisymmRel fun (x1 x2 : α) => x1 x2) (fun (x1 x2 : α) => x1 < x2) fun (x1 x2 : α) => x1 < x2
Equations
theorem AntisymmRel.le_congr {α : Type u_1} {a b c d : α} [Preorder α] (h₁ : AntisymmRel (fun (x1 x2 : α) => x1 x2) a b) (h₂ : AntisymmRel (fun (x1 x2 : α) => x1 x2) c d) :
a c b d
theorem AntisymmRel.le_congr_left {α : Type u_1} {a b c : α} [Preorder α] (h : AntisymmRel (fun (x1 x2 : α) => x1 x2) a b) :
a c b c
theorem AntisymmRel.le_congr_right {α : Type u_1} {a b c : α} [Preorder α] (h : AntisymmRel (fun (x1 x2 : α) => x1 x2) b c) :
a b a c
theorem AntisymmRel.lt_congr {α : Type u_1} {a b c d : α} [Preorder α] (h₁ : AntisymmRel (fun (x1 x2 : α) => x1 x2) a b) (h₂ : AntisymmRel (fun (x1 x2 : α) => x1 x2) c d) :
a < c b < d
theorem AntisymmRel.lt_congr_left {α : Type u_1} {a b c : α} [Preorder α] (h : AntisymmRel (fun (x1 x2 : α) => x1 x2) a b) :
a < c b < c
theorem AntisymmRel.lt_congr_right {α : Type u_1} {a b c : α} [Preorder α] (h : AntisymmRel (fun (x1 x2 : α) => x1 x2) b c) :
a < b a < c
theorem AntisymmRel.antisymmRel_congr {α : Type u_1} {a b c d : α} [Preorder α] (h₁ : AntisymmRel (fun (x1 x2 : α) => x1 x2) a b) (h₂ : AntisymmRel (fun (x1 x2 : α) => x1 x2) c d) :
AntisymmRel (fun (x1 x2 : α) => x1 x2) a c AntisymmRel (fun (x1 x2 : α) => x1 x2) b d
theorem AntisymmRel.antisymmRel_congr_left {α : Type u_1} {a b c : α} [Preorder α] (h : AntisymmRel (fun (x1 x2 : α) => x1 x2) a b) :
AntisymmRel (fun (x1 x2 : α) => x1 x2) a c AntisymmRel (fun (x1 x2 : α) => x1 x2) b c
theorem AntisymmRel.antisymmRel_congr_right {α : Type u_1} {a b c : α} [Preorder α] (h : AntisymmRel (fun (x1 x2 : α) => x1 x2) b c) :
AntisymmRel (fun (x1 x2 : α) => x1 x2) a b AntisymmRel (fun (x1 x2 : α) => x1 x2) a c
theorem AntisymmRel.image {α : Type u_1} {β : Type u_2} {a b : α} [Preorder α] [Preorder β] (h : AntisymmRel (fun (x1 x2 : α) => x1 x2) a b) {f : αβ} (hf : Monotone f) :
AntisymmRel (fun (x1 x2 : β) => x1 x2) (f a) (f b)
instance instPartialOrderAntisymmetrization {α : Type u_1} [Preorder α] :
PartialOrder (Antisymmetrization α fun (x1 x2 : α) => x1 x2)
Equations
  • One or more equations did not get rendered due to their size.
theorem antisymmetrization_fibration {α : Type u_1} [Preorder α] :
Relation.Fibration (fun (x1 x2 : α) => x1 < x2) (fun (x1 x2 : Antisymmetrization α fun (x1 x2 : α) => x1 x2) => x1 < x2) (toAntisymmetrization fun (x1 x2 : α) => x1 x2)
theorem acc_antisymmetrization_iff {α : Type u_1} {a : α} [Preorder α] :
Acc (fun (x1 x2 : Antisymmetrization α fun (x1 x2 : α) => x1 x2) => x1 < x2) (toAntisymmetrization (fun (x1 x2 : α) => x1 x2) a) Acc (fun (x1 x2 : α) => x1 < x2) a
instance instWellFoundedLTAntisymmetrizationLe {α : Type u_1} [Preorder α] [WellFoundedLT α] :
WellFoundedLT (Antisymmetrization α fun (x1 x2 : α) => x1 x2)
instance instWellFoundedGTAntisymmetrizationLe {α : Type u_1} [Preorder α] [WellFoundedGT α] :
WellFoundedGT (Antisymmetrization α fun (x1 x2 : α) => x1 x2)
instance instLinearOrderAntisymmetrizationLeOfDecidableLEOfDecidableLTOfIsTotal {α : Type u_1} [Preorder α] [DecidableLE α] [DecidableLT α] [IsTotal α fun (x1 x2 : α) => x1 x2] :
LinearOrder (Antisymmetrization α fun (x1 x2 : α) => x1 x2)
Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem toAntisymmetrization_le_toAntisymmetrization_iff {α : Type u_1} {a b : α} [Preorder α] :
toAntisymmetrization (fun (x1 x2 : α) => x1 x2) a toAntisymmetrization (fun (x1 x2 : α) => x1 x2) b a b
@[simp]
theorem toAntisymmetrization_lt_toAntisymmetrization_iff {α : Type u_1} {a b : α} [Preorder α] :
toAntisymmetrization (fun (x1 x2 : α) => x1 x2) a < toAntisymmetrization (fun (x1 x2 : α) => x1 x2) b a < b
@[simp]
theorem ofAntisymmetrization_le_ofAntisymmetrization_iff {α : Type u_1} [Preorder α] {a b : Antisymmetrization α fun (x1 x2 : α) => x1 x2} :
ofAntisymmetrization (fun (x1 x2 : α) => x1 x2) a ofAntisymmetrization (fun (x1 x2 : α) => x1 x2) b a b
@[simp]
theorem ofAntisymmetrization_lt_ofAntisymmetrization_iff {α : Type u_1} [Preorder α] {a b : Antisymmetrization α fun (x1 x2 : α) => x1 x2} :
ofAntisymmetrization (fun (x1 x2 : α) => x1 x2) a < ofAntisymmetrization (fun (x1 x2 : α) => x1 x2) b a < b
theorem toAntisymmetrization_mono {α : Type u_1} [Preorder α] :
Monotone (toAntisymmetrization fun (x1 x2 : α) => x1 x2)
def OrderHom.antisymmetrization {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] (f : α →o β) :
(Antisymmetrization α fun (x1 x2 : α) => x1 x2) →o Antisymmetrization β fun (x1 x2 : β) => x1 x2

Turns an order homomorphism from α to β into one from Antisymmetrization α to Antisymmetrization β. Antisymmetrization is actually a functor. See Preorder_to_PartialOrder.

Equations
@[simp]
theorem OrderHom.coe_antisymmetrization {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] (f : α →o β) :
theorem OrderHom.antisymmetrization_apply {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] (f : α →o β) (a : Antisymmetrization α fun (x1 x2 : α) => x1 x2) :
@[simp]
theorem OrderHom.antisymmetrization_apply_mk {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] (f : α →o β) (a : α) :
f.antisymmetrization (toAntisymmetrization (fun (x1 x2 : α) => x1 x2) a) = toAntisymmetrization (fun (x1 x2 : β) => x1 x2) (f a)
noncomputable def OrderEmbedding.ofAntisymmetrization (α : Type u_1) [Preorder α] :
(Antisymmetrization α fun (x1 x2 : α) => x1 x2) ↪o α

ofAntisymmetrization as an order embedding.

Equations
@[simp]
theorem OrderEmbedding.ofAntisymmetrization_apply (α : Type u_1) [Preorder α] (a✝ : Antisymmetrization α fun (x1 x2 : α) => x1 x2) :
(ofAntisymmetrization α) a✝ = _root_.ofAntisymmetrization (fun (x1 x2 : α) => x1 x2) a✝
def OrderIso.dualAntisymmetrization (α : Type u_1) [Preorder α] :
(Antisymmetrization α fun (x1 x2 : α) => x1 x2)ᵒᵈ ≃o Antisymmetrization αᵒᵈ fun (x1 x2 : αᵒᵈ) => x1 x2

Antisymmetrization and orderDual commute.

Equations
@[simp]
theorem OrderIso.dualAntisymmetrization_apply (α : Type u_1) [Preorder α] (a : α) :
(dualAntisymmetrization α) (OrderDual.toDual (toAntisymmetrization (fun (x1 x2 : α) => x1 x2) a)) = toAntisymmetrization (fun (x1 x2 : αᵒᵈ) => x1 x2) (OrderDual.toDual a)
@[simp]
theorem OrderIso.dualAntisymmetrization_symm_apply (α : Type u_1) [Preorder α] (a : α) :
(dualAntisymmetrization α).symm (toAntisymmetrization (fun (x1 x2 : αᵒᵈ) => x1 x2) (OrderDual.toDual a)) = OrderDual.toDual (toAntisymmetrization (fun (x1 x2 : α) => x1 x2) a)
def Antisymmetrization.prodEquiv (α : Type u_1) (β : Type u_2) [Preorder α] [Preorder β] :
(Antisymmetrization (α × β) fun (x1 x2 : α × β) => x1 x2) ≃o (Antisymmetrization α fun (x1 x2 : α) => x1 x2) × Antisymmetrization β fun (x1 x2 : β) => x1 x2

The antisymmetrization of a product preorder is order isomorphic to the product of antisymmetrizations.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem Antisymmetrization.prodEquiv_apply_mk (α : Type u_1) (β : Type u_2) [Preorder α] [Preorder β] {ab : α × β} :
(prodEquiv α β) ab = (ab.1, ab.2)
@[simp]
theorem Antisymmetrization.prodEquiv_symm_apply_mk (α : Type u_1) (β : Type u_2) [Preorder α] [Preorder β] {a : α} {b : β} :
instance Prod.wellFoundedLT (α : Type u_1) (β : Type u_2) [Preorder α] [Preorder β] [WellFoundedLT α] [WellFoundedLT β] :
instance Prod.wellFoundedGT (α : Type u_1) (β : Type u_2) [Preorder α] [Preorder β] [WellFoundedGT α] [WellFoundedGT β] :