Lattice operations on multisets #
sup #
Supremum of a multiset: sup {a, b, c} = a ⊔ b ⊔ c
Equations
- s.sup = Multiset.fold (fun (x1 x2 : α) => x1 ⊔ x2) ⊥ s
Instances For
@[simp]
@[simp]
@[simp]
@[simp]
theorem
Multiset.le_sup
{α : Type u_1}
[SemilatticeSup α]
[OrderBot α]
{s : Multiset α}
{a : α}
(h : a ∈ s)
:
theorem
Multiset.sup_mono
{α : Type u_1}
[SemilatticeSup α]
[OrderBot α]
{s₁ s₂ : Multiset α}
(h : s₁ ⊆ s₂)
:
@[simp]
theorem
Multiset.sup_dedup
{α : Type u_1}
[SemilatticeSup α]
[OrderBot α]
[DecidableEq α]
(s : Multiset α)
:
@[simp]
theorem
Multiset.sup_ndunion
{α : Type u_1}
[SemilatticeSup α]
[OrderBot α]
[DecidableEq α]
(s₁ s₂ : Multiset α)
:
@[simp]
theorem
Multiset.sup_union
{α : Type u_1}
[SemilatticeSup α]
[OrderBot α]
[DecidableEq α]
(s₁ s₂ : Multiset α)
:
@[simp]
theorem
Multiset.sup_ndinsert
{α : Type u_1}
[SemilatticeSup α]
[OrderBot α]
[DecidableEq α]
(a : α)
(s : Multiset α)
:
inf #
Infimum of a multiset: inf {a, b, c} = a ⊓ b ⊓ c
Equations
- s.inf = Multiset.fold (fun (x1 x2 : α) => x1 ⊓ x2) ⊤ s
Instances For
@[simp]
@[simp]
@[simp]
@[simp]
theorem
Multiset.inf_le
{α : Type u_1}
[SemilatticeInf α]
[OrderTop α]
{s : Multiset α}
{a : α}
(h : a ∈ s)
:
theorem
Multiset.inf_mono
{α : Type u_1}
[SemilatticeInf α]
[OrderTop α]
{s₁ s₂ : Multiset α}
(h : s₁ ⊆ s₂)
:
@[simp]
theorem
Multiset.inf_dedup
{α : Type u_1}
[SemilatticeInf α]
[OrderTop α]
[DecidableEq α]
(s : Multiset α)
:
@[simp]
theorem
Multiset.inf_ndunion
{α : Type u_1}
[SemilatticeInf α]
[OrderTop α]
[DecidableEq α]
(s₁ s₂ : Multiset α)
:
@[simp]
theorem
Multiset.inf_union
{α : Type u_1}
[SemilatticeInf α]
[OrderTop α]
[DecidableEq α]
(s₁ s₂ : Multiset α)
:
@[simp]
theorem
Multiset.inf_ndinsert
{α : Type u_1}
[SemilatticeInf α]
[OrderTop α]
[DecidableEq α]
(a : α)
(s : Multiset α)
: