Documentation

Mathlib.Data.List.MinMax

Minimum and maximum of lists #

Main definitions #

The main definitions are argmax, argmin, minimum and maximum for lists.

argmax f l returns some a, where a of l that maximises f a. If there are a b such that f a = f b, it returns whichever of a or b comes first in the list. argmax f [] = none

minimum l returns a WithTop α, the smallest element of l for nonempty lists, and for []

def List.argAux {α : Type u_1} (r : ααProp) [DecidableRel r] (a : Option α) (b : α) :

Auxiliary definition for argmax and argmin.

Equations
@[simp]
theorem List.foldl_argAux_eq_none {α : Type u_1} (r : ααProp) [DecidableRel r] {l : List α} {o : Option α} :
foldl (argAux r) o l = none l = [] o = none
@[simp]
theorem List.argAux_self {α : Type u_1} (r : ααProp) [DecidableRel r] (hr₀ : Irreflexive r) (a : α) :
argAux r (some a) a = some a
theorem List.not_of_mem_foldl_argAux {α : Type u_1} (r : ααProp) [DecidableRel r] {l : List α} (hr₀ : Irreflexive r) (hr₁ : Transitive r) {a m : α} {o : Option α} :
a lm foldl (argAux r) o l¬r a m
def List.argmax {α : Type u_1} {β : Type u_2} [Preorder β] [DecidableLT β] (f : αβ) (l : List α) :

argmax f l returns some a, where f a is maximal among the elements of l, in the sense that there is no b ∈ l with f a < f b. If a, b are such that f a = f b, it returns whichever of a or b comes first in the list. argmax f [] = none.

Equations
def List.argmin {α : Type u_1} {β : Type u_2} [Preorder β] [DecidableLT β] (f : αβ) (l : List α) :

argmin f l returns some a, where f a is minimal among the elements of l, in the sense that there is no b ∈ l with f b < f a. If a, b are such that f a = f b, it returns whichever of a or b comes first in the list. argmin f [] = none.

Equations
@[simp]
theorem List.argmax_nil {α : Type u_1} {β : Type u_2} [Preorder β] [DecidableLT β] (f : αβ) :
@[simp]
theorem List.argmin_nil {α : Type u_1} {β : Type u_2} [Preorder β] [DecidableLT β] (f : αβ) :
@[simp]
theorem List.argmax_singleton {α : Type u_1} {β : Type u_2} [Preorder β] [DecidableLT β] {f : αβ} {a : α} :
@[simp]
theorem List.argmin_singleton {α : Type u_1} {β : Type u_2} [Preorder β] [DecidableLT β] {f : αβ} {a : α} :
theorem List.not_lt_of_mem_argmax {α : Type u_1} {β : Type u_2} [Preorder β] [DecidableLT β] {f : αβ} {l : List α} {a m : α} :
a lm argmax f l¬f m < f a
theorem List.not_lt_of_mem_argmin {α : Type u_1} {β : Type u_2} [Preorder β] [DecidableLT β] {f : αβ} {l : List α} {a m : α} :
a lm argmin f l¬f a < f m
theorem List.argmax_concat {α : Type u_1} {β : Type u_2} [Preorder β] [DecidableLT β] (f : αβ) (a : α) (l : List α) :
argmax f (l ++ [a]) = Option.casesOn (argmax f l) (some a) fun (c : α) => if f c < f a then some a else some c
theorem List.argmin_concat {α : Type u_1} {β : Type u_2} [Preorder β] [DecidableLT β] (f : αβ) (a : α) (l : List α) :
argmin f (l ++ [a]) = Option.casesOn (argmin f l) (some a) fun (c : α) => if f a < f c then some a else some c
theorem List.argmax_mem {α : Type u_1} {β : Type u_2} [Preorder β] [DecidableLT β] {f : αβ} {l : List α} {m : α} :
m argmax f lm l
theorem List.argmin_mem {α : Type u_1} {β : Type u_2} [Preorder β] [DecidableLT β] {f : αβ} {l : List α} {m : α} :
m argmin f lm l
@[simp]
theorem List.argmax_eq_none {α : Type u_1} {β : Type u_2} [Preorder β] [DecidableLT β] {f : αβ} {l : List α} :
@[simp]
theorem List.argmin_eq_none {α : Type u_1} {β : Type u_2} [Preorder β] [DecidableLT β] {f : αβ} {l : List α} :
theorem List.le_of_mem_argmax {α : Type u_1} {β : Type u_2} [LinearOrder β] {f : αβ} {l : List α} {a m : α} :
a lm argmax f lf a f m
theorem List.le_of_mem_argmin {α : Type u_1} {β : Type u_2} [LinearOrder β] {f : αβ} {l : List α} {a m : α} :
a lm argmin f lf m f a
theorem List.argmax_cons {α : Type u_1} {β : Type u_2} [LinearOrder β] (f : αβ) (a : α) (l : List α) :
argmax f (a :: l) = Option.casesOn (argmax f l) (some a) fun (c : α) => if f a < f c then some c else some a
theorem List.argmin_cons {α : Type u_1} {β : Type u_2} [LinearOrder β] (f : αβ) (a : α) (l : List α) :
argmin f (a :: l) = Option.casesOn (argmin f l) (some a) fun (c : α) => if f c < f a then some c else some a
theorem List.index_of_argmax {α : Type u_1} {β : Type u_2} [LinearOrder β] {f : αβ} [DecidableEq α] {l : List α} {m : α} :
m argmax f l∀ {a : α}, a lf m f aidxOf m l idxOf a l
theorem List.index_of_argmin {α : Type u_1} {β : Type u_2} [LinearOrder β] {f : αβ} [DecidableEq α] {l : List α} {m : α} :
m argmin f l∀ {a : α}, a lf a f midxOf m l idxOf a l
theorem List.mem_argmax_iff {α : Type u_1} {β : Type u_2} [LinearOrder β] {f : αβ} {l : List α} {m : α} [DecidableEq α] :
m argmax f l m l (∀ (a : α), a lf a f m) ∀ (a : α), a lf m f aidxOf m l idxOf a l
theorem List.argmax_eq_some_iff {α : Type u_1} {β : Type u_2} [LinearOrder β] {f : αβ} {l : List α} {m : α} [DecidableEq α] :
argmax f l = some m m l (∀ (a : α), a lf a f m) ∀ (a : α), a lf m f aidxOf m l idxOf a l
theorem List.mem_argmin_iff {α : Type u_1} {β : Type u_2} [LinearOrder β] {f : αβ} {l : List α} {m : α} [DecidableEq α] :
m argmin f l m l (∀ (a : α), a lf m f a) ∀ (a : α), a lf a f midxOf m l idxOf a l
theorem List.argmin_eq_some_iff {α : Type u_1} {β : Type u_2} [LinearOrder β] {f : αβ} {l : List α} {m : α} [DecidableEq α] :
argmin f l = some m m l (∀ (a : α), a lf m f a) ∀ (a : α), a lf a f midxOf m l idxOf a l
def List.maximum {α : Type u_1} [Preorder α] [DecidableLT α] (l : List α) :

maximum l returns a WithBot α, the largest element of l for nonempty lists, and for []

Equations
def List.minimum {α : Type u_1} [Preorder α] [DecidableLT α] (l : List α) :

minimum l returns a WithTop α, the smallest element of l for nonempty lists, and for []

Equations
@[simp]
theorem List.maximum_nil {α : Type u_1} [Preorder α] [DecidableLT α] :
@[simp]
theorem List.minimum_nil {α : Type u_1} [Preorder α] [DecidableLT α] :
@[simp]
theorem List.maximum_singleton {α : Type u_1} [Preorder α] [DecidableLT α] (a : α) :
[a].maximum = a
@[simp]
theorem List.minimum_singleton {α : Type u_1} [Preorder α] [DecidableLT α] (a : α) :
[a].minimum = a
theorem List.maximum_mem {α : Type u_1} [Preorder α] [DecidableLT α] {l : List α} {m : α} :
l.maximum = mm l
theorem List.minimum_mem {α : Type u_1} [Preorder α] [DecidableLT α] {l : List α} {m : α} :
l.minimum = mm l
@[simp]
theorem List.maximum_eq_bot {α : Type u_1} [Preorder α] [DecidableLT α] {l : List α} :
@[simp]
theorem List.minimum_eq_top {α : Type u_1} [Preorder α] [DecidableLT α] {l : List α} :
theorem List.not_maximum_lt_of_mem {α : Type u_1} [Preorder α] [DecidableLT α] {l : List α} {a m : α} :
a ll.maximum = m¬m < a
@[deprecated List.not_maximum_lt_of_mem (since := "2024-12-29")]
theorem List.not_lt_maximum_of_mem {α : Type u_1} [Preorder α] [DecidableLT α] {l : List α} {a m : α} :
a ll.maximum = m¬m < a

Alias of List.not_maximum_lt_of_mem.

theorem List.not_lt_minimum_of_mem {α : Type u_1} [Preorder α] [DecidableLT α] {l : List α} {a m : α} :
a ll.minimum = m¬a < m
@[deprecated List.not_lt_minimum_of_mem (since := "2024-12-29")]
theorem List.minimum_not_lt_of_mem {α : Type u_1} [Preorder α] [DecidableLT α] {l : List α} {a m : α} :
a ll.minimum = m¬a < m

Alias of List.not_lt_minimum_of_mem.

theorem List.not_maximum_lt_of_mem' {α : Type u_1} [Preorder α] [DecidableLT α] {l : List α} {a : α} (ha : a l) :
¬l.maximum < a
@[deprecated List.not_maximum_lt_of_mem' (since := "2024-12-29")]
theorem List.not_lt_maximum_of_mem' {α : Type u_1} [Preorder α] [DecidableLT α] {l : List α} {a : α} (ha : a l) :
¬l.maximum < a

Alias of List.not_maximum_lt_of_mem'.

theorem List.not_lt_minimum_of_mem' {α : Type u_1} [Preorder α] [DecidableLT α] {l : List α} {a : α} (ha : a l) :
¬a < l.minimum
theorem List.maximum_concat {α : Type u_1} [LinearOrder α] (a : α) (l : List α) :
(l ++ [a]).maximum = l.maximum a
theorem List.le_maximum_of_mem {α : Type u_1} [LinearOrder α] {l : List α} {a m : α} :
a ll.maximum = ma m
theorem List.minimum_le_of_mem {α : Type u_1} [LinearOrder α] {l : List α} {a m : α} :
a ll.minimum = mm a
theorem List.le_maximum_of_mem' {α : Type u_1} [LinearOrder α] {l : List α} {a : α} (ha : a l) :
a l.maximum
theorem List.minimum_le_of_mem' {α : Type u_1} [LinearOrder α] {l : List α} {a : α} (ha : a l) :
l.minimum a
theorem List.minimum_concat {α : Type u_1} [LinearOrder α] (a : α) (l : List α) :
(l ++ [a]).minimum = l.minimum a
theorem List.maximum_cons {α : Type u_1} [LinearOrder α] (a : α) (l : List α) :
(a :: l).maximum = a l.maximum
theorem List.minimum_cons {α : Type u_1} [LinearOrder α] (a : α) (l : List α) :
(a :: l).minimum = a l.minimum
theorem List.maximum_append {α : Type u_1} [LinearOrder α] (l₁ l₂ : List α) :
(l₁ ++ l₂).maximum = l₁.maximum l₂.maximum
theorem List.minimum_append {α : Type u_1} [LinearOrder α] (l₁ l₂ : List α) :
(l₁ ++ l₂).minimum = l₁.minimum l₂.minimum
theorem List.maximum_le_of_forall_le {α : Type u_1} [LinearOrder α] {l : List α} {b : WithBot α} (h : ∀ (a : α), a la b) :
theorem List.le_minimum_of_forall_le {α : Type u_1} [LinearOrder α] {l : List α} {b : WithTop α} (h : ∀ (a : α), a lb a) :
theorem List.maximum_mono {α : Type u_1} [LinearOrder α] {l₁ l₂ : List α} (h : l₁ l₂) :
l₁.maximum l₂.maximum
theorem List.minimum_anti {α : Type u_1} [LinearOrder α] {l₁ l₂ : List α} (h : l₁ l₂) :
l₂.minimum l₁.minimum
theorem List.maximum_eq_coe_iff {α : Type u_1} [LinearOrder α] {l : List α} {m : α} :
l.maximum = m m l ∀ (a : α), a la m
theorem List.minimum_eq_coe_iff {α : Type u_1} [LinearOrder α] {l : List α} {m : α} :
l.minimum = m m l ∀ (a : α), a lm a
theorem List.coe_le_maximum_iff {α : Type u_1} [LinearOrder α] {l : List α} {a : α} :
a l.maximum (b : α), b l a b
theorem List.minimum_le_coe_iff {α : Type u_1} [LinearOrder α] {l : List α} {a : α} :
l.minimum a (b : α), b l b a
theorem List.maximum_ne_bot_of_ne_nil {α : Type u_1} [LinearOrder α] {l : List α} (h : l []) :
theorem List.minimum_ne_top_of_ne_nil {α : Type u_1} [LinearOrder α] {l : List α} (h : l []) :
theorem List.maximum_ne_bot_of_length_pos {α : Type u_1} [LinearOrder α] {l : List α} (h : 0 < l.length) :
theorem List.minimum_ne_top_of_length_pos {α : Type u_1} [LinearOrder α] {l : List α} (h : 0 < l.length) :
def List.maximum_of_length_pos {α : Type u_1} [LinearOrder α] {l : List α} (h : 0 < l.length) :
α

The maximum value in a non-empty List.

Equations
def List.minimum_of_length_pos {α : Type u_1} [LinearOrder α] {l : List α} (h : 0 < l.length) :
α

The minimum value in a non-empty List.

Equations
@[simp]
theorem List.coe_maximum_of_length_pos {α : Type u_1} [LinearOrder α] {l : List α} (h : 0 < l.length) :
@[simp]
theorem List.coe_minimum_of_length_pos {α : Type u_1} [LinearOrder α] {l : List α} (h : 0 < l.length) :
@[simp]
theorem List.le_maximum_of_length_pos_iff {α : Type u_1} [LinearOrder α] {l : List α} {b : α} (h : 0 < l.length) :
@[simp]
theorem List.minimum_of_length_pos_le_iff {α : Type u_1} [LinearOrder α] {l : List α} {b : α} (h : 0 < l.length) :
theorem List.le_maximum_of_length_pos_of_mem {α : Type u_1} [LinearOrder α] {l : List α} {a : α} (h : a l) (w : 0 < l.length) :
theorem List.minimum_of_length_pos_le_of_mem {α : Type u_1} [LinearOrder α] {l : List α} {a : α} (h : a l) (w : 0 < l.length) :
theorem List.getElem_le_maximum_of_length_pos {α : Type u_1} [LinearOrder α] {l : List α} {i : } (w : i < l.length) (h : 0 < l.length := ) :
theorem List.minimum_of_length_pos_le_getElem {α : Type u_1} [LinearOrder α] {l : List α} {i : } (w : i < l.length) (h : 0 < l.length := ) :
theorem List.getD_max?_eq_unbotD_maximum {α : Type u_1} [LinearOrder α] (l : List α) (d : α) :
@[deprecated List.getD_max?_eq_unbotD_maximum (since := "2025-02-06")]
theorem List.getD_max?_eq_unbot'_maximum {α : Type u_1} [LinearOrder α] (l : List α) (d : α) :

Alias of List.getD_max?_eq_unbotD_maximum.

theorem List.getD_min?_eq_untopD_minimum {α : Type u_1} [LinearOrder α] (l : List α) (d : α) :
@[deprecated List.getD_min?_eq_untopD_minimum (since := "2025-02-06")]
theorem List.getD_min?_eq_untop'_minimum {α : Type u_1} [LinearOrder α] (l : List α) (d : α) :

Alias of List.getD_min?_eq_untopD_minimum.

@[simp]
theorem List.foldr_max_of_ne_nil {α : Type u_1} [LinearOrder α] [OrderBot α] {l : List α} (h : l []) :
(foldr max l) = l.maximum
theorem List.max_le_of_forall_le {α : Type u_1} [LinearOrder α] [OrderBot α] (l : List α) (a : α) (h : ∀ (x : α), x lx a) :
theorem List.le_max_of_le {α : Type u_1} [LinearOrder α] [OrderBot α] {l : List α} {a x : α} (hx : x l) (h : a x) :
@[simp]
theorem List.foldr_min_of_ne_nil {α : Type u_1} [LinearOrder α] [OrderTop α] {l : List α} (h : l []) :
(foldr min l) = l.minimum
theorem List.le_min_of_forall_le {α : Type u_1} [LinearOrder α] [OrderTop α] (l : List α) (a : α) (h : ∀ (x : α), x la x) :
theorem List.min_le_of_le {α : Type u_1} [LinearOrder α] [OrderTop α] (l : List α) (a : α) {x : α} (hx : x l) (h : x a) :
theorem List.le_max_of_le' {α : Type u_1} [LinearOrder α] {l : List α} {a x : α} (b : α) (hx : x l) (h : a x) :
a foldr max b l

If a ≤ x for some x in the list l, and b : α, then a ≤ l.foldr max b.

theorem List.min_le_of_le' {α : Type u_1} [LinearOrder α] {l : List α} {a x : α} (b : α) (hx : x l) (h : x a) :
foldr min b l a