Canonically ordered rings and semirings. #
@[deprecated "Use `[OrderedCommSemiring R] [CanonicallyOrderedAdd R] [NoZeroDivisors R]` instead." (since := "2025-01-13")]
structure
CanonicallyOrderedCommSemiring
(R : Type u_1)
extends CanonicallyOrderedAddCommMonoid R, CommSemiring R :
Type u_1
A canonically ordered commutative semiring is an ordered, commutative semiring in which a ≤ b
iff there exists c
with b = a + c
. This is satisfied by the natural numbers, for example, but
not the integers or other ordered groups.
@[instance 10]
instance
CanonicallyOrderedAdd.toZeroLEOneClass
{R : Type u}
[AddZeroClass R]
[One R]
[LE R]
[CanonicallyOrderedAdd R]
:
theorem
Odd.pos
{R : Type u}
[Semiring R]
[PartialOrder R]
[CanonicallyOrderedAdd R]
[Nontrivial R]
{a : R}
:
@[instance 100]
instance
CanonicallyOrderedAdd.toMulLeftMono
{R : Type u}
[NonUnitalNonAssocSemiring R]
[LE R]
[CanonicallyOrderedAdd R]
:
theorem
CanonicallyOrderedAdd.toIsOrderedMonoid
{R : Type u}
[CommSemiring R]
[PartialOrder R]
[CanonicallyOrderedAdd R]
:
theorem
CanonicallyOrderedAdd.toIsOrderedRing
{R : Type u}
[CommSemiring R]
[PartialOrder R]
[CanonicallyOrderedAdd R]
:
@[simp]
theorem
CanonicallyOrderedAdd.mul_pos
{R : Type u}
[CommSemiring R]
[PartialOrder R]
[CanonicallyOrderedAdd R]
[NoZeroDivisors R]
{a b : R}
:
theorem
CanonicallyOrderedAdd.pow_pos
{R : Type u}
[CommSemiring R]
[PartialOrder R]
[CanonicallyOrderedAdd R]
[NoZeroDivisors R]
{a : R}
(ha : 0 < a)
(n : ℕ)
:
theorem
CanonicallyOrderedAdd.mul_lt_mul_of_lt_of_lt
{R : Type u}
[CommSemiring R]
[PartialOrder R]
[CanonicallyOrderedAdd R]
[PosMulStrictMono R]
{a b c d : R}
(hab : a < b)
(hcd : c < d)
:
theorem
AddLECancellable.mul_tsub
{R : Type u}
[NonUnitalNonAssocSemiring R]
[PartialOrder R]
[CanonicallyOrderedAdd R]
[Sub R]
[OrderedSub R]
[IsTotal R fun (x1 x2 : R) => x1 ≤ x2]
{a b c : R}
(h : AddLECancellable (a * c))
:
theorem
AddLECancellable.tsub_mul
{R : Type u}
[NonUnitalNonAssocSemiring R]
[PartialOrder R]
[CanonicallyOrderedAdd R]
[Sub R]
[OrderedSub R]
[IsTotal R fun (x1 x2 : R) => x1 ≤ x2]
[MulRightMono R]
{a b c : R}
(h : AddLECancellable (b * c))
:
theorem
mul_tsub
{R : Type u}
[NonUnitalNonAssocSemiring R]
[PartialOrder R]
[CanonicallyOrderedAdd R]
[Sub R]
[OrderedSub R]
[IsTotal R fun (x1 x2 : R) => x1 ≤ x2]
[AddLeftReflectLE R]
(a b c : R)
:
theorem
tsub_mul
{R : Type u}
[NonUnitalNonAssocSemiring R]
[PartialOrder R]
[CanonicallyOrderedAdd R]
[Sub R]
[OrderedSub R]
[IsTotal R fun (x1 x2 : R) => x1 ≤ x2]
[AddLeftReflectLE R]
[MulRightMono R]
(a b c : R)
:
theorem
mul_tsub_one
{R : Type u}
[NonAssocSemiring R]
[PartialOrder R]
[CanonicallyOrderedAdd R]
[Sub R]
[OrderedSub R]
[IsTotal R fun (x1 x2 : R) => x1 ≤ x2]
[AddLeftReflectLE R]
(a b : R)
:
theorem
tsub_one_mul
{R : Type u}
[NonAssocSemiring R]
[PartialOrder R]
[CanonicallyOrderedAdd R]
[Sub R]
[OrderedSub R]
[IsTotal R fun (x1 x2 : R) => x1 ≤ x2]
[MulRightMono R]
[AddLeftReflectLE R]
(a b : R)
:
theorem
mul_self_tsub_mul_self
{R : Type u}
[CommSemiring R]
[PartialOrder R]
[CanonicallyOrderedAdd R]
[Sub R]
[OrderedSub R]
[IsTotal R fun (x1 x2 : R) => x1 ≤ x2]
[AddLeftReflectLE R]
(a b : R)
:
The tsub
version of mul_self_sub_mul_self
. Notably, this holds for Nat
and NNReal
.
theorem
sq_tsub_sq
{R : Type u}
[CommSemiring R]
[PartialOrder R]
[CanonicallyOrderedAdd R]
[Sub R]
[OrderedSub R]
[IsTotal R fun (x1 x2 : R) => x1 ≤ x2]
[AddLeftReflectLE R]
(a b : R)
:
The tsub
version of sq_sub_sq
. Notably, this holds for Nat
and NNReal
.
theorem
mul_self_tsub_one
{R : Type u}
[CommSemiring R]
[PartialOrder R]
[CanonicallyOrderedAdd R]
[Sub R]
[OrderedSub R]
[IsTotal R fun (x1 x2 : R) => x1 ≤ x2]
[AddLeftReflectLE R]
(a : R)
: