Documentation

Mathlib.Algebra.Order.Module.Field

Ordered vector spaces #

@[instance 100]
instance PosSMulMono.toPosSMulReflectLE {๐•œ : Type u_1} {G : Type u_2} [Semifield ๐•œ] [LinearOrder ๐•œ] [IsStrictOrderedRing ๐•œ] [PartialOrder G] [MulAction ๐•œ G] [PosSMulMono ๐•œ G] :
PosSMulReflectLE ๐•œ G
@[instance 100]
instance PosSMulStrictMono.toPosSMulReflectLT {๐•œ : Type u_1} {G : Type u_2} [Semifield ๐•œ] [LinearOrder ๐•œ] [IsStrictOrderedRing ๐•œ] [AddCommGroup G] [PartialOrder G] [MulActionWithZero ๐•œ G] [PosSMulStrictMono ๐•œ G] :
PosSMulReflectLT ๐•œ G
theorem inv_smul_le_iff_of_neg {๐•œ : Type u_1} {G : Type u_2} [Field ๐•œ] [LinearOrder ๐•œ] [IsStrictOrderedRing ๐•œ] [AddCommGroup G] [PartialOrder G] [IsOrderedAddMonoid G] [Module ๐•œ G] {a : ๐•œ} {bโ‚ bโ‚‚ : G} [PosSMulMono ๐•œ G] (h : a < 0) :
aโปยน โ€ข bโ‚ โ‰ค bโ‚‚ โ†” a โ€ข bโ‚‚ โ‰ค bโ‚
theorem smul_inv_le_iff_of_neg {๐•œ : Type u_1} {G : Type u_2} [Field ๐•œ] [LinearOrder ๐•œ] [IsStrictOrderedRing ๐•œ] [AddCommGroup G] [PartialOrder G] [IsOrderedAddMonoid G] [Module ๐•œ G] {a : ๐•œ} {bโ‚ bโ‚‚ : G} [PosSMulMono ๐•œ G] (h : a < 0) :
bโ‚ โ‰ค aโปยน โ€ข bโ‚‚ โ†” bโ‚‚ โ‰ค a โ€ข bโ‚
def OrderIso.smulRightDual {๐•œ : Type u_1} (G : Type u_2) [Field ๐•œ] [LinearOrder ๐•œ] [IsStrictOrderedRing ๐•œ] [AddCommGroup G] [PartialOrder G] [IsOrderedAddMonoid G] [Module ๐•œ G] {a : ๐•œ} [PosSMulMono ๐•œ G] (ha : a < 0) :

Left scalar multiplication as an order isomorphism.

Equations
Instances For
    @[simp]
    theorem OrderIso.smulRightDual_symm_apply {๐•œ : Type u_1} (G : Type u_2) [Field ๐•œ] [LinearOrder ๐•œ] [IsStrictOrderedRing ๐•œ] [AddCommGroup G] [PartialOrder G] [IsOrderedAddMonoid G] [Module ๐•œ G] {a : ๐•œ} [PosSMulMono ๐•œ G] (ha : a < 0) (aโœ : Gแต’แตˆ) :
    @[simp]
    theorem OrderIso.smulRightDual_apply {๐•œ : Type u_1} (G : Type u_2) [Field ๐•œ] [LinearOrder ๐•œ] [IsStrictOrderedRing ๐•œ] [AddCommGroup G] [PartialOrder G] [IsOrderedAddMonoid G] [Module ๐•œ G] {a : ๐•œ} [PosSMulMono ๐•œ G] (ha : a < 0) (aโœ : G) :
    (smulRightDual G ha) aโœ = a โ€ข OrderDual.toDual aโœ
    theorem inv_smul_lt_iff_of_neg {๐•œ : Type u_1} {G : Type u_2} [Field ๐•œ] [LinearOrder ๐•œ] [IsStrictOrderedRing ๐•œ] [AddCommGroup G] [PartialOrder G] [IsOrderedAddMonoid G] [Module ๐•œ G] {a : ๐•œ} {bโ‚ bโ‚‚ : G} [PosSMulStrictMono ๐•œ G] (h : a < 0) :
    aโปยน โ€ข bโ‚ < bโ‚‚ โ†” a โ€ข bโ‚‚ < bโ‚
    theorem smul_inv_lt_iff_of_neg {๐•œ : Type u_1} {G : Type u_2} [Field ๐•œ] [LinearOrder ๐•œ] [IsStrictOrderedRing ๐•œ] [AddCommGroup G] [PartialOrder G] [IsOrderedAddMonoid G] [Module ๐•œ G] {a : ๐•œ} {bโ‚ bโ‚‚ : G} [PosSMulStrictMono ๐•œ G] (h : a < 0) :
    bโ‚ < aโปยน โ€ข bโ‚‚ โ†” bโ‚‚ < a โ€ข bโ‚
    theorem Mathlib.Meta.Positivity.smul_nonneg_of_pos_of_nonneg {ฮฑ : Type u_3} {ฮฒ : Type u_4} [Zero ฮฑ] [Zero ฮฒ] [SMulZeroClass ฮฑ ฮฒ] [Preorder ฮฑ] [Preorder ฮฒ] [PosSMulMono ฮฑ ฮฒ] {a : ฮฑ} {b : ฮฒ} (ha : 0 < a) (hb : 0 โ‰ค b) :
    theorem Mathlib.Meta.Positivity.smul_nonneg_of_nonneg_of_pos {ฮฑ : Type u_3} {ฮฒ : Type u_4} [Zero ฮฑ] [Zero ฮฒ] [SMulZeroClass ฮฑ ฮฒ] [Preorder ฮฑ] [Preorder ฮฒ] [PosSMulMono ฮฑ ฮฒ] {a : ฮฑ} {b : ฮฒ} (ha : 0 โ‰ค a) (hb : 0 < b) :
    theorem Mathlib.Meta.Positivity.smul_nonneg_of_pos_of_pos {ฮฑ : Type u_3} {ฮฒ : Type u_4} [Zero ฮฑ] [Zero ฮฒ] [SMulZeroClass ฮฑ ฮฒ] [Preorder ฮฑ] [Preorder ฮฒ] [PosSMulMono ฮฑ ฮฒ] {a : ฮฑ} {b : ฮฒ} (ha : 0 < a) (hb : 0 < b) :
    theorem Mathlib.Meta.Positivity.smul_ne_zero_of_pos_of_ne_zero {ฮฑ : Type u_3} {ฮฒ : Type u_4} [Zero ฮฑ] [Zero ฮฒ] [SMul ฮฑ ฮฒ] [NoZeroSMulDivisors ฮฑ ฮฒ] {a : ฮฑ} {b : ฮฒ} [Preorder ฮฑ] (ha : 0 < a) (hb : b โ‰  0) :
    theorem Mathlib.Meta.Positivity.smul_ne_zero_of_ne_zero_of_pos {ฮฑ : Type u_3} {ฮฒ : Type u_4} [Zero ฮฑ] [Zero ฮฒ] [SMul ฮฑ ฮฒ] [NoZeroSMulDivisors ฮฑ ฮฒ] {a : ฮฑ} {b : ฮฒ} [Preorder ฮฒ] (ha : a โ‰  0) (hb : 0 < b) :

    Positivity extension for scalar multiplication.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For