Documentation

Mathlib.Algebra.Order.Kleene

Kleene Algebras #

This file defines idempotent semirings and Kleene algebras, which are used extensively in the theory of computation.

An idempotent semiring is a semiring whose addition is idempotent. An idempotent semiring is naturally a semilattice by setting a ≤ b if a + b = b.

A Kleene algebra is an idempotent semiring equipped with an additional unary operator , the Kleene star.

Main declarations #

Notation #

a∗ is notation for kstar a in locale Computability.

References #

TODO #

Instances for AddOpposite, MulOpposite, ULift, Subsemiring, Subring, Subalgebra.

Tags #

kleene algebra, idempotent semiring

class IdemSemiring (α : Type u) extends Semiring α, SemilatticeSup α :

An idempotent semiring is a semiring with the additional property that addition is idempotent.

Instances
    class IdemCommSemiring (α : Type u) extends CommSemiring α, IdemSemiring α :

    An idempotent commutative semiring is a commutative semiring with the additional property that addition is idempotent.

    Instances
      class KStar (α : Type u_5) :
      Type u_5

      Notation typeclass for the Kleene star .

      • kstar : αα

        The Kleene star operator on a Kleene algebra

      Instances

        The Kleene star operator on a Kleene algebra

        Equations
        class KleeneAlgebra (α : Type u_5) extends IdemSemiring α, KStar α :
        Type u_5

        A Kleene Algebra is an idempotent semiring with an additional unary operator kstar (for Kleene star) that satisfies the following properties:

        • 1 + a * a∗ ≤ a∗
        • 1 + a∗ * a ≤ a∗
        • If a * c + b ≤ c, then a∗ * b ≤ c
        • If c * a + b ≤ c, then b * a∗ ≤ c
        Instances
          @[instance 100]
          instance IdemSemiring.toOrderBot {α : Type u_1} [IdemSemiring α] :
          Equations
          @[reducible, inline]
          abbrev IdemSemiring.ofSemiring {α : Type u_1} [Semiring α] (h : ∀ (a : α), a + a = a) :

          Construct an idempotent semiring from an idempotent addition.

          Equations
          • One or more equations did not get rendered due to their size.
          theorem add_eq_sup {α : Type u_1} [IdemSemiring α] (a b : α) :
          a + b = ab
          theorem add_idem {α : Type u_1} [IdemSemiring α] (a : α) :
          a + a = a
          theorem natCast_eq_one {α : Type u_1} [IdemSemiring α] {n : } (nezero : n 0) :
          n = 1
          theorem ofNat_eq_one {α : Type u_1} [IdemSemiring α] {n : } [n.AtLeastTwo] :
          theorem nsmul_eq_self {α : Type u_1} [IdemSemiring α] {n : } :
          n 0∀ (a : α), n a = a
          theorem add_eq_left_iff_le {α : Type u_1} [IdemSemiring α] {a b : α} :
          a + b = a b a
          theorem add_eq_right_iff_le {α : Type u_1} [IdemSemiring α] {a b : α} :
          a + b = b a b
          theorem LE.le.add_eq_left {α : Type u_1} [IdemSemiring α] {a b : α} :
          b aa + b = a

          Alias of the reverse direction of add_eq_left_iff_le.

          theorem LE.le.add_eq_right {α : Type u_1} [IdemSemiring α] {a b : α} :
          a ba + b = b

          Alias of the reverse direction of add_eq_right_iff_le.

          theorem add_le_iff {α : Type u_1} [IdemSemiring α] {a b c : α} :
          a + b c a c b c
          theorem add_le {α : Type u_1} [IdemSemiring α] {a b c : α} (ha : a c) (hb : b c) :
          a + b c
          @[instance 100]
          @[instance 100]
          @[simp]
          theorem one_le_kstar {α : Type u_1} [KleeneAlgebra α] {a : α} :
          theorem mul_kstar_le_kstar {α : Type u_1} [KleeneAlgebra α] {a : α} :
          theorem kstar_mul_le_kstar {α : Type u_1} [KleeneAlgebra α] {a : α} :
          theorem mul_kstar_le_self {α : Type u_1} [KleeneAlgebra α] {a b : α} :
          b * a bb * KStar.kstar a b
          theorem kstar_mul_le_self {α : Type u_1} [KleeneAlgebra α] {a b : α} :
          a * b bKStar.kstar a * b b
          theorem mul_kstar_le {α : Type u_1} [KleeneAlgebra α] {a b c : α} (hb : b c) (ha : c * a c) :
          theorem kstar_mul_le {α : Type u_1} [KleeneAlgebra α] {a b c : α} (hb : b c) (ha : a * c c) :
          theorem kstar_le_of_mul_le_left {α : Type u_1} [KleeneAlgebra α] {a b : α} (hb : 1 b) :
          b * a bKStar.kstar a b
          theorem kstar_le_of_mul_le_right {α : Type u_1} [KleeneAlgebra α] {a b : α} (hb : 1 b) :
          a * b bKStar.kstar a b
          @[simp]
          theorem le_kstar {α : Type u_1} [KleeneAlgebra α] {a : α} :
          @[simp]
          theorem kstar_eq_one {α : Type u_1} [KleeneAlgebra α] {a : α} :
          @[simp]
          theorem kstar_zero {α : Type u_1} [KleeneAlgebra α] :
          @[simp]
          theorem kstar_one {α : Type u_1} [KleeneAlgebra α] :
          @[simp]
          theorem kstar_mul_kstar {α : Type u_1} [KleeneAlgebra α] (a : α) :
          @[simp]
          theorem kstar_eq_self {α : Type u_1} [KleeneAlgebra α] {a : α} :
          KStar.kstar a = a a * a = a 1 a
          @[simp]
          theorem kstar_idem {α : Type u_1} [KleeneAlgebra α] (a : α) :
          @[simp]
          theorem pow_le_kstar {α : Type u_1} [KleeneAlgebra α] {a : α} {n : } :
          instance Prod.instIdemSemiring {α : Type u_1} {β : Type u_2} [IdemSemiring α] [IdemSemiring β] :
          Equations
          instance Prod.instIdemCommSemiring {α : Type u_1} {β : Type u_2} [IdemCommSemiring α] [IdemCommSemiring β] :
          Equations
          instance Prod.instKleeneAlgebra {α : Type u_1} {β : Type u_2} [KleeneAlgebra α] [KleeneAlgebra β] :
          Equations
          • One or more equations did not get rendered due to their size.
          theorem Prod.kstar_def {α : Type u_1} {β : Type u_2} [KleeneAlgebra α] [KleeneAlgebra β] (a : α × β) :
          @[simp]
          theorem Prod.fst_kstar {α : Type u_1} {β : Type u_2} [KleeneAlgebra α] [KleeneAlgebra β] (a : α × β) :
          @[simp]
          theorem Prod.snd_kstar {α : Type u_1} {β : Type u_2} [KleeneAlgebra α] [KleeneAlgebra β] (a : α × β) :
          instance Pi.instIdemSemiring {ι : Type u_3} {π : ιType u_4} [(i : ι) → IdemSemiring (π i)] :
          IdemSemiring ((i : ι) → π i)
          Equations
          instance Pi.instIdemCommSemiringForall {ι : Type u_3} {π : ιType u_4} [(i : ι) → IdemCommSemiring (π i)] :
          IdemCommSemiring ((i : ι) → π i)
          Equations
          instance Pi.instKleeneAlgebraForall {ι : Type u_3} {π : ιType u_4} [(i : ι) → KleeneAlgebra (π i)] :
          KleeneAlgebra ((i : ι) → π i)
          Equations
          • One or more equations did not get rendered due to their size.
          theorem Pi.kstar_def {ι : Type u_3} {π : ιType u_4} [(i : ι) → KleeneAlgebra (π i)] (a : (i : ι) → π i) :
          KStar.kstar a = fun (i : ι) => KStar.kstar (a i)
          @[simp]
          theorem Pi.kstar_apply {ι : Type u_3} {π : ιType u_4} [(i : ι) → KleeneAlgebra (π i)] (a : (i : ι) → π i) (i : ι) :
          @[reducible, inline]
          abbrev Function.Injective.idemSemiring {α : Type u_1} {β : Type u_2} [IdemSemiring α] [Zero β] [One β] [Add β] [Mul β] [Pow β ] [SMul β] [NatCast β] [Max β] [Bot β] (f : βα) (hf : Injective f) (zero : f 0 = 0) (one : f 1 = 1) (add : ∀ (x y : β), f (x + y) = f x + f y) (mul : ∀ (x y : β), f (x * y) = f x * f y) (nsmul : ∀ (n : ) (x : β), f (n x) = n f x) (npow : ∀ (x : β) (n : ), f (x ^ n) = f x ^ n) (natCast : ∀ (n : ), f n = n) (sup : ∀ (a b : β), f (ab) = f af b) (bot : f = ) :

          Pullback an IdemSemiring instance along an injective function.

          Equations
          • One or more equations did not get rendered due to their size.
          @[reducible, inline]
          abbrev Function.Injective.idemCommSemiring {α : Type u_1} {β : Type u_2} [IdemCommSemiring α] [Zero β] [One β] [Add β] [Mul β] [Pow β ] [SMul β] [NatCast β] [Max β] [Bot β] (f : βα) (hf : Injective f) (zero : f 0 = 0) (one : f 1 = 1) (add : ∀ (x y : β), f (x + y) = f x + f y) (mul : ∀ (x y : β), f (x * y) = f x * f y) (nsmul : ∀ (n : ) (x : β), f (n x) = n f x) (npow : ∀ (x : β) (n : ), f (x ^ n) = f x ^ n) (natCast : ∀ (n : ), f n = n) (sup : ∀ (a b : β), f (ab) = f af b) (bot : f = ) :

          Pullback an IdemCommSemiring instance along an injective function.

          Equations
          • One or more equations did not get rendered due to their size.
          @[reducible, inline]
          abbrev Function.Injective.kleeneAlgebra {α : Type u_1} {β : Type u_2} [KleeneAlgebra α] [Zero β] [One β] [Add β] [Mul β] [Pow β ] [SMul β] [NatCast β] [Max β] [Bot β] [KStar β] (f : βα) (hf : Injective f) (zero : f 0 = 0) (one : f 1 = 1) (add : ∀ (x y : β), f (x + y) = f x + f y) (mul : ∀ (x y : β), f (x * y) = f x * f y) (nsmul : ∀ (n : ) (x : β), f (n x) = n f x) (npow : ∀ (x : β) (n : ), f (x ^ n) = f x ^ n) (natCast : ∀ (n : ), f n = n) (sup : ∀ (a b : β), f (ab) = f af b) (bot : f = ) (kstar : ∀ (a : β), f (KStar.kstar a) = KStar.kstar (f a)) :

          Pullback a KleeneAlgebra instance along an injective function.

          Equations
          • One or more equations did not get rendered due to their size.