Lemmas about powers in ordered fields. #
theorem
Even.zpow_nonneg
{α : Type u_1}
[Field α]
[LinearOrder α]
[IsStrictOrderedRing α]
{n : ℤ}
(hn : Even n)
(a : α)
:
theorem
zpow_neg_two_nonneg
{α : Type u_1}
[Field α]
[LinearOrder α]
[IsStrictOrderedRing α]
(a : α)
:
theorem
Even.zpow_pos
{α : Type u_1}
[Field α]
[LinearOrder α]
[IsStrictOrderedRing α]
{a : α}
{n : ℤ}
(hn : Even n)
(ha : a ≠ 0)
:
theorem
zpow_two_pos_of_ne_zero
{α : Type u_1}
[Field α]
[LinearOrder α]
[IsStrictOrderedRing α]
{a : α}
(ha : a ≠ 0)
:
theorem
Even.zpow_pos_iff
{α : Type u_1}
[Field α]
[LinearOrder α]
[IsStrictOrderedRing α]
{a : α}
{n : ℤ}
(hn : Even n)
(h : n ≠ 0)
:
theorem
Odd.zpow_neg_iff
{α : Type u_1}
[Field α]
[LinearOrder α]
[IsStrictOrderedRing α]
{a : α}
{n : ℤ}
(hn : Odd n)
:
theorem
Odd.zpow_nonneg_iff
{α : Type u_1}
[Field α]
[LinearOrder α]
[IsStrictOrderedRing α]
{a : α}
{n : ℤ}
(hn : Odd n)
:
theorem
Odd.zpow_nonpos_iff
{α : Type u_1}
[Field α]
[LinearOrder α]
[IsStrictOrderedRing α]
{a : α}
{n : ℤ}
(hn : Odd n)
:
theorem
Odd.zpow_pos_iff
{α : Type u_1}
[Field α]
[LinearOrder α]
[IsStrictOrderedRing α]
{a : α}
{n : ℤ}
(hn : Odd n)
:
theorem
Odd.zpow_neg
{α : Type u_1}
[Field α]
[LinearOrder α]
[IsStrictOrderedRing α]
{a : α}
{n : ℤ}
(hn : Odd n)
:
Alias of the reverse direction of Odd.zpow_neg_iff
.
theorem
Odd.zpow_nonpos
{α : Type u_1}
[Field α]
[LinearOrder α]
[IsStrictOrderedRing α]
{a : α}
{n : ℤ}
(hn : Odd n)
:
Alias of the reverse direction of Odd.zpow_nonpos_iff
.
theorem
zpow_eq_neg_one_iff₀
{α : Type u_1}
[Field α]
[LinearOrder α]
[IsStrictOrderedRing α]
{a : α}
{n : ℤ}
:
Bernoulli's inequality #
theorem
Nat.cast_le_pow_sub_div_sub
{α : Type u_1}
[Field α]
[LinearOrder α]
[IsStrictOrderedRing α]
{a : α}
(H : 1 < a)
(n : ℕ)
:
Bernoulli's inequality reformulated to estimate (n : α)
.
theorem
Nat.cast_le_pow_div_sub
{α : Type u_1}
[Field α]
[LinearOrder α]
[IsStrictOrderedRing α]
{a : α}
(H : 1 < a)
(n : ℕ)
:
For any a > 1
and a natural n
we have n ≤ a ^ n / (a - 1)
. See also
Nat.cast_le_pow_sub_div_sub
for a stronger inequality with a ^ n - 1
in the numerator.
The positivity
extension which identifies expressions of the form a ^ (b : ℤ)
,
such that positivity
successfully recognises both a
and b
.
Equations
- One or more equations did not get rendered due to their size.