Documentation

Carleson.WeakType

The distribution function d_f #

def MeasureTheory.distribution {α : Type u_1} {E : Type u_4} {m : MeasurableSpace α} [NNNorm E] (f : αE) (t : ENNReal) (μ : MeasureTheory.Measure α) :

The distribution function of a function f. Note that unlike the notes, we also define this for t = ∞. Note: we also want to use this for functions with codomain ℝ≥0∞, but for those we just write μ { x | t < f x }

Equations
Instances For
    theorem MeasureTheory.distribution_mono_left {α : Type u_1} {E : Type u_4} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f g : αE} {t : ENNReal} (h : ∀ᵐ (x : α) ∂μ, f x g x) :
    theorem MeasureTheory.distribution_mono {α : Type u_1} {E : Type u_4} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f g : αE} {t s : ENNReal} (h₁ : ∀ᵐ (x : α) ∂μ, f x g x) (h₂ : t s) :
    theorem MeasureTheory.ENNNorm_absolute_homogeneous {𝕜 : Type u_3} {E : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] {c : 𝕜} (z : E) :
    theorem MeasureTheory.distribution_measurable {α : Type u_1} {α' : Type u_2} {E : Type u_4} {m : MeasurableSpace α} {m✝ : MeasurableSpace α'} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} {g : α'ENNReal} (hg : Measurable g) :
    Measurable fun (y : α') => MeasureTheory.distribution f (g y) μ
    theorem MeasureTheory.distribution_smul_left {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] {f : αE} {t : ENNReal} {c : 𝕜} (hc : c 0) :
    theorem MeasureTheory.measure_mono_ae' {α : Type u_1} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} {A B : Set α} (h : μ (B \ A) = 0) :
    μ B μ A
    theorem MeasureTheory.distribution_add_le' {α : Type u_1} {E : Type u_4} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} {t s : ENNReal} {A : } (hA : A 0) (g₁ g₂ : αE) (h : ∀ᵐ (x : α) ∂μ, f x A * (g₁ x + g₂ x)) :
    theorem MeasureTheory.approx_above_superset {α : Type u_1} {E : Type u_4} [NormedAddCommGroup E] {f : αE} (t₀ : ENNReal) :
    ⋃ (n : ), (fun (n : ) => {x : α | t₀ + (↑n)⁻¹ < f x‖₊}) n = {x : α | t₀ < f x‖₊}
    theorem MeasureTheory.tendsto_measure_iUnion_distribution {α : Type u_1} {E : Type u_4} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} (t₀ : ENNReal) :
    Filter.Tendsto (μ fun (n : ) => {x : α | t₀ + (↑n)⁻¹ < f x‖₊}) Filter.atTop (nhds (μ {x : α | t₀ < f x‖₊}))
    theorem MeasureTheory.select_neighborhood_distribution {α : Type u_1} {E : Type u_4} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} (t₀ l : ENNReal) (hu : l < MeasureTheory.distribution f t₀ μ) :
    ∃ (n : ), l < MeasureTheory.distribution f (t₀ + (↑n)⁻¹) μ
    theorem MeasureTheory.continuousWithinAt_distribution {α : Type u_1} {E : Type u_4} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} (t₀ : ENNReal) :
    theorem ContinuousLinearMap.distribution_le {α : Type u_1} {𝕜 : Type u_3} {E₁ : Type u_5} {E₂ : Type u_6} {E₃ : Type u_7} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E₁] [NormedSpace 𝕜 E₁] [NormedAddCommGroup E₂] [NormedSpace 𝕜 E₂] [NormedAddCommGroup E₃] [NormedSpace 𝕜 E₃] (L : E₁ →L[𝕜] E₂ →L[𝕜] E₃) {t s : ENNReal} {f : αE₁} {g : αE₂} :
    MeasureTheory.distribution (fun (x : α) => (L (f x)) (g x)) (L‖₊ * t * s) μ MeasureTheory.distribution f t μ + MeasureTheory.distribution g s μ
    theorem MeasureTheory.lintegral_norm_pow_eq_distribution {α : Type u_1} {E : Type u_4} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} [MeasurableSpace E] [BorelSpace E] (hf : AEMeasurable f μ) {p : } (hp : 0 < p) :
    ∫⁻ (x : α), f x‖₊ ^ pμ = ∫⁻ (t : ) in Set.Ioi 0, ENNReal.ofReal (p * t ^ (p - 1)) * MeasureTheory.distribution f (ENNReal.ofReal t) μ

    The layer-cake theorem, or Cavalieri's principle for functions into a normed group.

    theorem MeasureTheory.eLpNorm_pow_eq_distribution {α : Type u_1} {E : Type u_4} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} [MeasurableSpace E] [BorelSpace E] (hf : AEMeasurable f μ) {p : NNReal} (hp : 0 < p) :
    MeasureTheory.eLpNorm f (↑p) μ ^ p = ∫⁻ (t : ) in Set.Ioi 0, p * ENNReal.ofReal (t ^ (p - 1)) * MeasureTheory.distribution f (ENNReal.ofReal t) μ

    The layer-cake theorem, or Cavalieri's principle, written using eLpNorm.

    theorem MeasureTheory.eLpNorm_eq_distribution {α : Type u_1} {E : Type u_4} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} [MeasurableSpace E] [BorelSpace E] (hf : AEMeasurable f μ) {p : } (hp : 0 < p) :

    The layer-cake theorem, or Cavalieri's principle, written using eLpNorm, without taking powers.

    theorem MeasureTheory.lintegral_pow_mul_distribution {α : Type u_1} {E : Type u_4} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} [MeasurableSpace E] [BorelSpace E] (hf : AEMeasurable f μ) {p : } (hp : -1 < p) :
    ∫⁻ (t : ) in Set.Ioi 0, ENNReal.ofReal (t ^ p) * MeasureTheory.distribution f (ENNReal.ofReal t) μ = ENNReal.ofReal (p + 1)⁻¹ * ∫⁻ (x : α), f x‖₊ ^ (p + 1)μ
    def MeasureTheory.wnorm' {α : Type u_1} {E : Type u_4} {m : MeasurableSpace α} [NNNorm E] (f : αE) (p : ) (μ : MeasureTheory.Measure α) :

    The weak L^p norm of a function, for p < ∞

    Equations
    Instances For
      def MeasureTheory.wnorm {α : Type u_1} {E : Type u_4} {m : MeasurableSpace α} [NormedAddCommGroup E] [NNNorm E] (f : αE) (p : ENNReal) (μ : MeasureTheory.Measure α) :

      The weak L^p norm of a function.

      Equations
      Instances For
        def MeasureTheory.MemWℒp {α : Type u_1} {E : Type u_4} {m : MeasurableSpace α} [NormedAddCommGroup E] [NNNorm E] (f : αE) (p : ENNReal) (μ : MeasureTheory.Measure α) :

        A function is in weak-L^p if it is (strongly a.e.)-measurable and has finite weak L^p norm.

        Equations
        Instances For
          theorem MeasureTheory.Memℒp.memWℒp {α : Type u_1} {E : Type u_4} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} {p : ENNReal} (hp : 1 p) (hf : MeasureTheory.Memℒp f p μ) :
          def MeasureTheory.HasWeakType {α : Type u_1} {α' : Type u_2} {E₁ : Type u_5} {E₂ : Type u_6} {m : MeasurableSpace α} {m✝ : MeasurableSpace α'} [NormedAddCommGroup E₁] [NormedAddCommGroup E₂] (T : (αE₁)α'E₂) (p p' : ENNReal) (μ : MeasureTheory.Measure α) (ν : MeasureTheory.Measure α') (c : NNReal) :

          An operator has weak type (p, q) if it is bounded as a map from L^p to weak-L^q. HasWeakType T p p' μ ν c means that T has weak type (p, p') w.r.t. measures μ, ν and constant c.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            def MeasureTheory.HasStrongType {E : Type u_8} {E' : Type u_9} {α : Type u_10} {α' : Type u_11} [NormedAddCommGroup E] [NormedAddCommGroup E'] {_x : MeasurableSpace α} {_x' : MeasurableSpace α'} (T : (αE)α'E') (p p' : ENNReal) (μ : MeasureTheory.Measure α) (ν : MeasureTheory.Measure α') (c : NNReal) :

            An operator has strong type (p, q) if it is bounded as an operator on L^p → L^q. HasStrongType T p p' μ ν c means that T has strong type (p, p') w.r.t. measures μ, ν and constant c.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              def MeasureTheory.HasBoundedStrongType {E : Type u_8} {E' : Type u_9} {α : Type u_10} {α' : Type u_11} [NormedAddCommGroup E] [NormedAddCommGroup E'] {_x : MeasurableSpace α} {_x' : MeasurableSpace α'} (T : (αE)α'E') (p p' : ENNReal) (μ : MeasureTheory.Measure α) (ν : MeasureTheory.Measure α') (c : NNReal) :

              A weaker version of HasStrongType. This is the same as HasStrongType if T is continuous w.r.t. the L^2 norm, but weaker in general.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                theorem MeasureTheory.HasStrongType.hasWeakType {α : Type u_1} {α' : Type u_2} {E₁ : Type u_5} {E₂ : Type u_6} {m : MeasurableSpace α} {m✝ : MeasurableSpace α'} {p p' : ENNReal} {c : NNReal} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α'} [NormedAddCommGroup E₁] [NormedAddCommGroup E₂] {T : (αE₁)α'E₂} (hp' : 1 p') (h : MeasureTheory.HasStrongType T p p' μ ν c) :
                theorem MeasureTheory.HasStrongType.hasBoundedStrongType {α : Type u_1} {α' : Type u_2} {E₁ : Type u_5} {E₂ : Type u_6} {m : MeasurableSpace α} {m✝ : MeasurableSpace α'} {p p' : ENNReal} {c : NNReal} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α'} [NormedAddCommGroup E₁] [NormedAddCommGroup E₂] {T : (αE₁)α'E₂} (h : MeasureTheory.HasStrongType T p p' μ ν c) :
                theorem MeasureTheory.HasStrongType.const_smul {𝕜 : Type u_8} {E : Type u_9} {E' : Type u_10} {α : Type u_11} {α' : Type u_12} [NormedAddCommGroup E] [NormedAddCommGroup E'] {_x : MeasurableSpace α} {_x' : MeasurableSpace α'} {T : (αE)α'E'} {p p' : ENNReal} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α'} {c : NNReal} (h : MeasureTheory.HasStrongType T p p' μ ν c) [NormedRing 𝕜] [MulActionWithZero 𝕜 E'] [BoundedSMul 𝕜 E'] (k : 𝕜) :
                theorem MeasureTheory.HasStrongType.const_mul {E : Type u_8} {E' : Type u_9} {α : Type u_10} {α' : Type u_11} [NormedAddCommGroup E] [NormedRing E'] {_x : MeasurableSpace α} {_x' : MeasurableSpace α'} {T : (αE)α'E'} {p p' : ENNReal} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α'} {c : NNReal} (h : MeasureTheory.HasStrongType T p p' μ ν c) (e : E') :
                MeasureTheory.HasStrongType (fun (f : αE) (x : α') => e * T f x) p p' μ ν (e‖₊ * c)