Documentation

Carleson.ToMathlib.CoveredByBalls

class inductive CoveredByBalls {X : Type u_1} [PseudoMetricSpace X] (s : Set X) (n : ) (r : ) :

s can be covered by at most N balls with radius r.

Instances
    theorem coveredByBalls_iff {X : Type u_1} [PseudoMetricSpace X] (s : Set X) (n : ) (r : ) :
    CoveredByBalls s n r ∃ (balls : Finset X), balls.card n s xballs, Metric.ball x r
    theorem CoveredByBalls.mono_set {X : Type u_1} [PseudoMetricSpace X] {s t : Set X} {n : } {r : } (h : CoveredByBalls t n r) (h2 : s t) :
    theorem CoveredByBalls.mono_nat {X : Type u_1} [PseudoMetricSpace X] {s : Set X} {n m : } {r : } (h : CoveredByBalls s n r) (h2 : n m) :
    theorem CoveredByBalls.mono_real {X : Type u_1} [PseudoMetricSpace X] {s : Set X} {n : } {r r' : } (h : CoveredByBalls s n r) (h2 : r r') :
    @[simp]
    theorem CoveredByBalls.empty {X : Type u_1} [PseudoMetricSpace X] {n : } {r : } :
    @[simp]
    theorem CoveredByBalls.zero_left {X : Type u_1} [PseudoMetricSpace X] {s : Set X} {r : } :
    @[simp]
    theorem CoveredByBalls.zero_right {X : Type u_1} [PseudoMetricSpace X] {s : Set X} {n : } :
    theorem CoveredByBalls.ball {X : Type u_1} [PseudoMetricSpace X] (x : X) (r : ) :
    def BallsCoverBalls (X : Type u_1) [PseudoMetricSpace X] (r r' : ) (n : ) :

    Balls of radius r in X are covered by n balls of radius r'

    Equations
    Instances For
      theorem CoveredByBalls.trans {X : Type u_1} [PseudoMetricSpace X] {s : Set X} {n m : } {r r' : } (h : CoveredByBalls s n r) (h2 : BallsCoverBalls X r r' m) :
      CoveredByBalls s (n * m) r'
      theorem BallsCoverBalls.mono {X : Type u_1} [PseudoMetricSpace X] {n : } {r₁ r₂ r₃ : } (h : BallsCoverBalls X r₂ r₃ n) (h2 : r₁ r₂) :
      BallsCoverBalls X r₁ r₃ n
      theorem BallsCoverBalls.trans {X : Type u_1} [PseudoMetricSpace X] {n m : } {r₁ r₂ r₃ : } (h1 : BallsCoverBalls X r₁ r₂ n) (h2 : BallsCoverBalls X r₂ r₃ m) :
      BallsCoverBalls X r₁ r₃ (n * m)
      theorem BallsCoverBalls.zero {X : Type u_1} [PseudoMetricSpace X] {n : } {r : } :
      theorem BallsCoverBalls.nonpos {X : Type u_1} [PseudoMetricSpace X] {n : } {r r' : } (hr' : r' 0) :
      def AllBallsCoverBalls (X : Type u_1) [PseudoMetricSpace X] (a : ) (n : ) :

      For all r, balls of radius r in X are covered by n balls of radius a * r

      Equations
      Instances For
        theorem AllBallsCoverBalls.mk {X : Type u_1} [PseudoMetricSpace X] {n : } {a : } (ha : 0 a) (h : r > 0, BallsCoverBalls X (a * r) r n) :

        Prove AllBallsCoverBalls only for balls of positive radius.

        theorem AllBallsCoverBalls.pow {X : Type u_1} [PseudoMetricSpace X] {n : } {a : } {k : } (h : AllBallsCoverBalls X a n) :
        AllBallsCoverBalls X (a ^ k) (n ^ k)
        theorem AllBallsCoverBalls.ballsCoverBalls_pow {X : Type u_1} [PseudoMetricSpace X] {n : } {a : } {k : } (h : AllBallsCoverBalls X a n) :
        BallsCoverBalls X (a ^ k) 1 (n ^ k)
        theorem AllBallsCoverBalls.ballsCoverBalls {X : Type u_1} [PseudoMetricSpace X] {n : } {r r' a : } (h : AllBallsCoverBalls X a n) (h2 : 1 < a) (hr : 0 < r) :
        theorem Metric.secondCountableTopology_of_almost_dense_set_balls_nat {α : Type u_2} [PseudoMetricSpace α] (x₀ : α) (H : ε > 0, ∀ (n : ), ∃ (s : Set α), s.Countable xball x₀ n, ys, dist x y ε) :

        A pseudometric space is second countable if, for every ε > 0 and every ball B with natural number radius around a given point x₀, there is a countable set which is ε-dense in B.

        theorem Metric.secondCountableTopology_of_almost_dense_set_balls {α : Type u_2} [PseudoMetricSpace α] (H : ∀ (x₀ : α), ε > 0, ∀ (r : ), ∃ (s : Set α), s.Countable xball x₀ r, ys, dist x y ε) :

        A pseudometric space is second countable if, for every ε > 0 and every ball B, there is a countable set which is ε-dense in B.

        theorem BallsCoverBalls.secondCountableTopology {X : Type u_1} [PseudoMetricSpace X] (H : ε > 0, ∀ (r : ), ∃ (n : ), BallsCoverBalls X r ε n) :

        A pseudometric space is second countable if, for every ε > 0 and every ball B is covered by finitely many balls of radius ε.

        A pseudometric space is second countable if every ball of radius a * r is covered by b many balls of radius r.